THE CHIARI MALFORMATIONS: DIAGNOSIS AND MANAGEMENT

Historical overview

- Named after Hans Chiari (1851–1916) .
- Professor of Pathology in Prague, Czechoslovakia,
- Paper entitled "Concerning alterations in the cerebellum resulting from cerebral hydrocephalus"
- Published in Deutsche Medizinische Wochenscriff in 1891
- Autopsy series, 40 cases
- Described cerebellar anomalies in congenital hydrocephalus

- Initially described three malformations
- 5 years later he revised the second and added a fourth
- Arnold described a single case with Chiari II features
- The chiari II malformation also known as Arnold-Chiari malformation.

Introduction and definition

- Series of hindbrain anomalies
- No anatomical or embryological correlation between them
- Four types

Туре	Definition
Chiari I	Caudal descent of <i>cerebellar tonsils</i> > 5mm below foramen magnum Hydrocephalus uncommon
Chiari II	Caudal herniation of <i>cerebellar vermis, brainstem and fourth ventricle</i> Almost all have hydrocephalus and myelomeningocele
Chiari III	Chiari II and posterior fossa contents herniating into occipital/ high cervical encephalocele
Chiari IV	Cerebellar aplasia or hypoplasia with aplasia of tentorium cerebelli

Chiari I malformation

- Traditionally defined as > 5mm tonsillar descent below the foramen magnum.
- Tonsils ascend with age
- Abnormal for age
 - > 6mm in first decade
 - > 5 mm in second and third decade
 - > 4 mm in fourth through eighth decade
 - > 3 mm in ninth decade.

- More important than absolute tonsillar descent may be
 - Peg like shape of tonsils
 - Attenuation of posterior fossa cisternal spaces
 - Suggestive clinical picture
- Primarily Chiari I is manifestation of underdevelopment and malformation of occipital cranium
- Cerebellar ectopia due to reduced posterior fossa volume and crowding of contents

- Other manifestations of hypodeveloped post fossa
 - Increased slope of the tentorium
 - Reduced height of the supraocciput
 - Reduced length of the clivus
 - Retroflexion of odontoid process

Acquired tonsillar ectopia

- Due to reduced volume of cranial cavity (Rickets, Craniosynostosis, Pagets disease)
- Due to increase in volume of intracranial contents (acute hydrocephalus, tumour, cerebral edema)

Chiari I malformation

Associated findings

Skull

- Shortened supraocciput
- Shortened clivus
- Larger than normal foramen magnum
- Empty sella
- Clival concavity, platybasia, basilar impression

Spine

- Klippel-flail deformity and atlanto axial assimilation
- Retroflexed odontoid process
- Thickened ligamentum flavum
- Scoliosis

Meninges

- Elevated slope of tentorium cerebelli
- Thickened arachnoid at foramen magnum level
- Dural thickening/ at the level of arch of atlas

- Spinal cord
 - 50 to 75 % have cavitation within the cord (syrinx)
 - Lower cervical and thoracic cord mostly involved.
 - Segment of cord caudal to 4th ventricle may be spared from cavitation.
- Brain usually normal except for tonsillar abnormality
- Hydrocephalus described in 3 to 10 %.

Signs and symptoms

- Pain is the most common complaint
 - Occipital and cervical region pain aggravated by Valsalva, cough-laugh headaches
- Signs and symptoms related to brainstem / cranial nerve and cerebellar compromise
 - Ataxia, downbeating nystagmus, incordination, dizziness
 - Dyspahgia, dysarthria, hiccoughs, glossal atrophy
 - Impaired gag, facial numbness
 - Extreme cases "cerebellar fits"

- Signs and symptoms related to syrinx
 - Dissociative sensory loss, upper limb weakness and thinning, lower limb spasticity.
 - Neuropathic pain in the extremities.
 - Neuropathic joints in upper extremities.
 - Uncommonly, JPS loss leading to sensory ataxia.
- Presentation usually in the 2nd and 3rd decades with a female preponderance

Theories explaining syringomyelia

- Gardner's hydrodynamic theory
 - Blocked fourth ventricular outlet
 - Pulsatile CSF pressure transmitted to central canal through obex "Water hammer"
- William's craniospinal dissociation theory
 - Valve like obstruction to free flow of CSF between cranial and spinal subarachnoid space at FM
 - Equalization of CSF pressure between cranial and spinal compartments hindered
 - CSF sucked into the syrinx.

Oldfield's theory

- Systolic downward motion of the tonsils creates a piston effect on the cervical spinal cord
- Interstitial fluid driven into the central canal distending it.
- No theory however, successfully explains all observations

Approach to treatment of Chiari I

Asymptomatic chiari I

Exclude hydrocephalus, ventral compression, cervical instability

Symptomatic chiari I Exclude hydrocephalus, ventral compression, cervical instability Syrinx No syrinx Chiari <3mm caudal >7mm caudal decompressi 3-7mm descent descent on Exercise Observation with frequent clinical evaluation judgement

Chiari I decompression

- Aim of the surgical procedure
 - Establishment of normal CSF outflow from the ventricles
 - Increasing posterior fossa volume

Surgical options

- Suboccipital bone removal
- Dural opening with or without closure
- Arachnoid opening and hitching
- Tonsillar reduction and opening of fourth ventricular outlet
- Fourth ventricular shunting

- Suboccipital bone removal + C1 laminectomy
 - 3 X 3 cm suboccipital craniectomy
 - Dura left intact
 - Dura inelastic hence, decompression inadequate
 - Larger craniectomies with dural opening result in cerebellar ptosis.
- Dural opening with or without closure
 - Options
 - Only superficial layer divided
 - Durotomy with intact arachnoid
 - Augmentation duraplasty
 - Williams procedure dural edges sutured to the muscle
 - At craniocervical juction, division of thick dural band

Opening the arachnoid

- Required when significant tonsillar descent with syringomyelia
- Arachnoid bands divided
- Arachnoid pegged to the dural edges
- Augmentation duraplasty

- Tonsil reduction
 - Subpial coagulation
 - Subpial resection when tonsils gliotic
- Fourth ventricular shunting
 - When tonsils encased in dense arachnoid scar
 - Shunt tubing inserted under USG guidance into the fourth ventricle and communicated to cervical subarachnoid space
- Obex plugging redundant

Complications

- Aseptic meningitis (most common)
- Wound dehiscence, pseudomeningocele
- CSF leak

Chiari II malformation

Defining features

- Caudal descent of vermis, fourth ventricle and brainstem
- Almost always associated with hydrocephalus and associated anomalies
- Seen in almost all patients with myelomeningocele
- 0.02% of all births with female preponderance

Theories

- Chiari's theory
 - Hydrocephalus leading to secondary Chiari
 - 10-20 % may not have hydrocephalus
 - Associated anomalies not explained
 - Chairi II features precede hydrocephalus
 - Small posterior fossa, low lying tentorium, upward cerebellar herniation not explained

- Cleland's theory
 - Primary dysgenesis of the hindbrain
 - Fails to explain supratentorial anomalies
- Induced small posterior fossa
 - Due to CSF leaking out from the open spinal cord defect
 - Fails to explain associated anomalies

Penfield's traction theory

- Traction by tethering of cord at the site of myelomeningocele pulls the post fossa contents
- Traction effect however dissipated four spinal levels rostral
- Fails to explain associated cranial deformities

Unified theory of Mclone and Knepper

- Currently most accepted
- Both the open neural tube defect and incomplete occlusion of central canal responsible
- Temporary occlusion of the neural tube (Day 23-32)
 mandatory for upstream ventricular distension
- Posterior fossa not fully developed due to inadequate ventricular distension
- Rapid growth of hindbrain later leads to herniation

Radiological findings

Skull

- Luckenschadel/ craniolacunia
- Frontal bone scalloping "lemon sign"
- Scalloping of petrous bone and jugular tubercles
- Concavity of the clivus
- Low inion, small post fossa
- Enlarged foramen magnum
- Clival concavity
- Basilar invagination and atlas assimilation

Spine

- Cervical spinal canal enlarged.
- Scalloping of the odontoid process
- Incomplete posterior arch of C1
- Klippel-Feil deformity

Ventricle and cistern

- Hydrocephalus seen in 90%.
- Fourth ventricular outlet obstruction responsible
- Aqueductal stenosis uncommonly responsible for hydrocephalus
- Medial pointing of the inferior margins of floor of lateral ventricles
- "Colpocephaly"
- Fourth ventricle typically small, flat and elongated
- Lateral recesses not well defined

Meninges

- Tentorium cerebelli usually widened heart shaped
- Low lying, hypoplastic
- Falx cerebri fenestrated/hypoplastic

Spinal cord

- Myelomeningocele always associated with Chiari II
- Syringomyelia in 20-95%
- Shortened cervical cord

Telencephalon

- Complete partial agenesis of corpus callosum/ septum pellucidum
- Polygyria
- "Chinese lettering" Interdigitation of occipital / parietal lobes

- Gray matter heterotopia
- Agenesis of olfactory tract/bulb/cingulate gyrus
- Diencephalon
 - Enlarged massa intermedia
- Mesencephalon
 - Tectal beaking due to fusion of the colliculi
 - Midbrain typically elongated
 - Cranial nerve nuclei may be malformed
 - Aqueduct may be stenotic, stretched, posteriorly kinked or forked

Metencephalon

- Cerebellum grossly smaller and may tower above tentorium
- Cerebellum may be displaced laterally spreading around the brainstem – <u>"banana sign"</u>
- Lateral cerebellar edges may touch brainstem and basilar artery – "cerebellar inversion"
- Pons elongated and flattened

Myelencephalon

- Medullary kinking, elongation and flattening
- Pyramidal decussation more cephalad than normal

Clinical presentation

- Most common is with open neural tube defects
- Symptomatic chiari II is the most common cause of death in children <2 yrs of age with MMC.</p>
- Symptomatic patients can be classified according to age at presentation
- Whatever be the age of child, hydrocephalus/ shunt malfunction should be excluded

- Age at presentation less than 2yrs
 - Most frequent symptoms related to brain stem and cranial nerve dysfunction
 - Symptomatic Chiari is a neurosurgical emergency in this group.
 - Most commonly inspiratory stridor and PEAC (prolonged expiratory apnea and cyanosis)
 - PEAC = Apneic spell+ ophistotonic posturing and cyanosis
 - Laryngoscopy may reveal impaired vocal cord abduction
 - Downbeat nystagmus, fixed retrocollis

- Other signs and symptoms
 - Impairment of gag
 - Dysphagia, chronic aspiration, nasal regurgitation
 - Quadriparesis, nystagmus, developmental delay
 - Weak cry.

Presentation in older age group

- Less serious and rarely an emergency
- Hallmark is cervical myelopathy
- Weakness and spasticity in upper limbs
- Suboccipital headache
- Ataxia
- Hand weakness, atrophy
- Syringomyelia and associated symptoms
- Ophthalmic problems common in adults

Chiari II Approach to management

Symptomatic chiari II

Exclude hydrocephalus/verify shunt function and cervical stability

Large syrinx

No syrinx/small to moderate syrinx

Chiari decompresion plus syringopleural shunt

Cervical laminectomy with limited posterior fossa decompression

Chiari decompression

- Surgical technique basically similar to that in chiari-I
- Cervical laminectomy should expose the inferior margin of the herniated cerebellum
- Limited suboccipital craniectomy
- Constricting dural bands divided
- Key objective finding the outlet of fourth ventricle
- Choroid plexus may serve as a guide

- Obstructive vermian tissue may be divided / perforated to encourage CSF flow out of the ventricles.
- Medullary kink not to be confused with vermis.
- Arachnoid clipped to dura with augmentation duraplasty
- Complications of this procedure similar to that for Chiari I.

Chiari III and IV

Chiari III

- Very rare
- Occipital or cervical encephalocoele along with chiari II anomalies

Chiari IV

- No hindbrain herniation
- Cerebellar hypoplasia or aplasia

Miscellaneous

Chiari zero

- CSF equilibrium changes at cranio-cervical junction
- No hindbrain herniation
- Syringohydromyelia
- Post fossa decompression leads to dramatic improvement
- Other causes of syrinx must be excluded.

Thank you