# CNS TUBERCULOSIS IMAGING AND SURGERY

#### **Tuberculosis**

- As old as recorded history
- Symptoms described in the Rig Veda (1500 BC)
- Unequivocal lesions in Egyptian mummies
- Ddier, Ford described meningeal TB 1790
- Surgical excision Wernicke and Hahn 1882,

#### **Tuberculosis**

- CNS tuberculosis complicates 10% of all TB
- Never the first manifestation

Occurs within 6-12 months

 Circle of Willis more frequently involved than the basilar system

#### Mycobacterium tuberculosis

- Acid fast bacillus
- Does not stain on gram stain
- Obligate aerobes
- Difficult to grow
- High lipid in cell wall
- Hominis/ Bovine/ Avium

#### Pathogenesis

- May develop during initial infection/ reactivation
- Haematogenous dissemination
  - Commonest
  - Focus in brain (Rich focus)
  - Rupture of focus into subarachnoid/ ventricular space
- Contiguous spread

#### **CNS** tuberculosis

- Intracranial
  - Parenchymal
  - Meningeal
  - Osseous
- Spinal
  - Parenchymal
  - Meningeal
  - Arachnoiditis
  - Osseous

#### Epidemiology

- Incidence varies blacks > whites
- Predominantly in the **young** (**50**% **<10**)
- Abscess in 4-8% (20% with HIV)

#### Pathology

 Immature lesions – multiple tubercles in oedematous brain

 Mature: avascular mass, nodular extensions, yellowish gritty casseous areas

60% attached to dura

# Pathology (parrenchymal)

- Can be present anywhere
- Cerebellum in children

Cerebral hemisphere and basal ganglia commoner in adults

# Pathology (tuberculoma)

- Tuberculoma (classical lesion)
- Tuberculoma en plaque
- Tuberculous abscess
- Cystic tuberculoma
- Multiple grape like tuberculoma
- Microtuberculoma
- Calcified tuberculoma
- Tuberculous encephalopathy

### Pathology (tuberculoma)

- Dastur described six main types
  - Parenchymal changes.
    - (1) Ventriculitis
    - (2) Border-zone encephalitis
    - (3) Infarction
    - (4) Internal hydrocephalus
    - (5) Diffuse oedema
    - (6) Tuberculoma

### Pathology (meningeal)

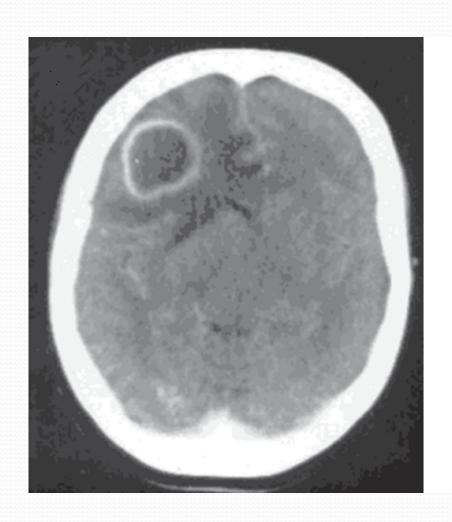
- Classically Commonest in 6m 3 years
- Now adults 50%
- Thick exudate encasing nerves, vessels
- HCP, tuberculoma, arachnoiditis
- Diffuse perivasculitis
- Infarcts
- Pachymeningitis

#### Diagnosis

- Montoux test
- Hb/ ESR
- CXR
- ELISA
- CSF
- PCR
- Imaging
- Biopsy

### **Imaging**

- X ray
- Angiography
- CT
- MRI


of historical significance

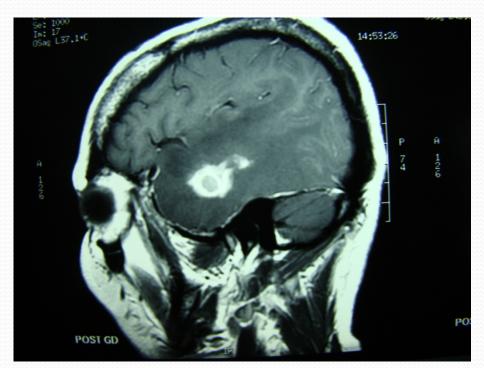
#### **Imaging**

- Tuberculoma
  - Typically cortical and subcortical
  - Multiple in 10-35%
  - Milliary rare (children)
- Meningitis (commonest form of CNS TB)
  - Isolated meningitis is rare (5% in children)
  - Basal cisterns

# Imaging (CT tuberculoma)

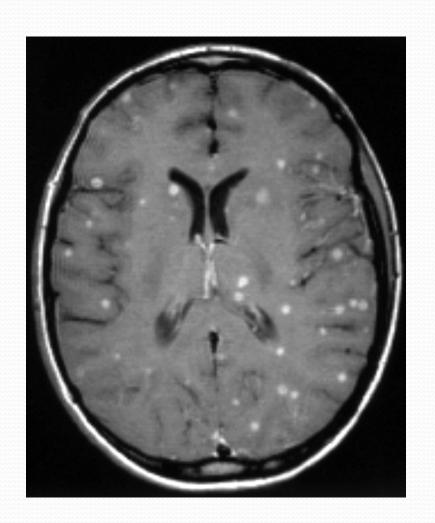
- Cerebritis: hypodense areas
- Perilesional oedema out of proportion
- Early tuberculoma: iso to slightly hyper dense, ring enhancement
- Evolved: well delineated ring enhancing mass, target sign (central enhancement or calcification)
- Healed: often calcify
- Manifestations
  - Small disc/ rings
  - Large rings with central lucency
  - Large nodular mass with irregular outline
  - Multiple lesions in 15-20%




Caseating tuberculosis granuloma involving the right frontal lobe. CECT shows a rim-enhancing lesion in the right frontal lobe consistent with a caseating tuberculosis granuloma

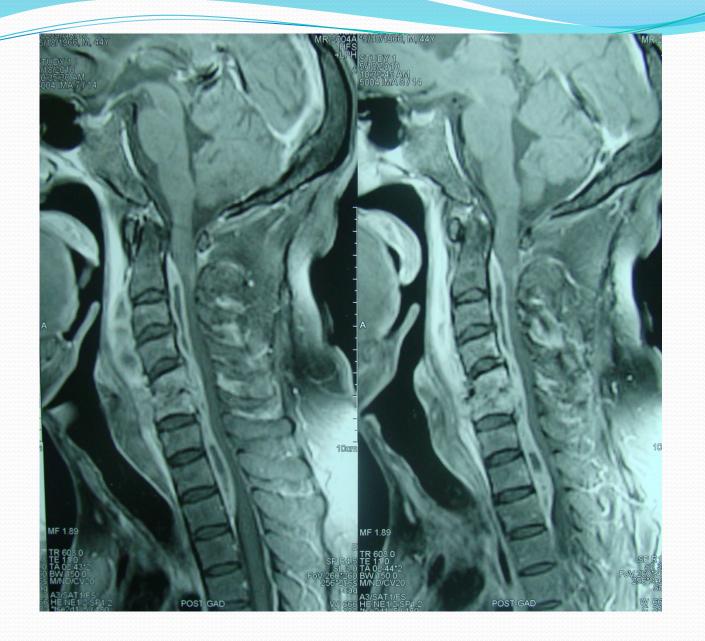






### Imaging (MRI tuberculoma)

- T1: isointence
- T2: central hyper with hypo ring
- Marked thin rim enhancement
- Hypo on T2: fibrosis, gliosis, macrophage infiltration






Parrenchymal tuberculosis. contrast-enhanced T1-weighted MR image demonstrates multiple enhancing caseating and non-caseating tuberculomas, predominantly within the left frontal and parietal lobes



Milliary CNS tuberculosis. Axial contrast-enhanced T1-weighted MR image shows multiple small high-signal-intensity foci within both cerebral hemispheres





|                                          | CT                                                                          | MRI                                                                                |  |
|------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Noncaseating granuloma                   | NECT: hypo-/isodense<br>CECT: homogenous enhancement                        | T1WI: low SI<br>T2WI: high SI<br>T1WI Gd: homogenous enhancemer                    |  |
| Caseating granuloma with a solid center  | CECT: heterogenous enhancement centrally<br>Ring enhancement of the capsule | T1WI: low/intermediate SI<br>T2WI: intermediate/low SI<br>T1WI Gd: rim enhancement |  |
| Caseating granuloma with a liquid center | NECT: hypodense<br>CECT: rim enhancement                                    | T1WI: hypointense SI T2WI: hyperintense SI + rim hypo T1WI Gd: rim enhancement     |  |

A. Bernaerts, F. M. VanhoenackerTuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol (2003) 13:1876–1890

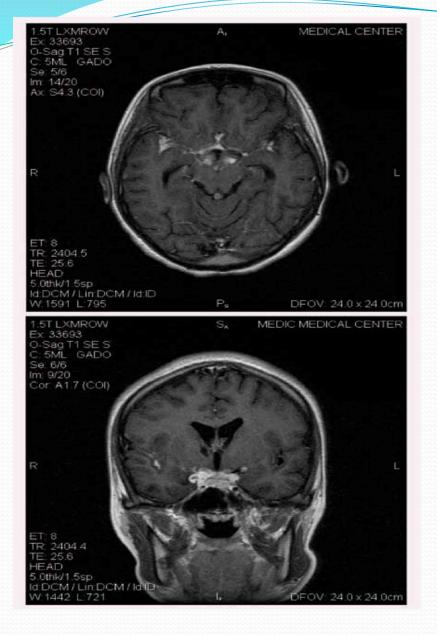
### Imaging (meningitis)

- Active
- Sequelae
  - Hydrocephalus
  - Ischemia and infarction
    - Medial lenticulostriate
    - Thalamoperforating
    - Cortex 25%
    - Bilateral 70%
  - Atrophy
  - Calcification

75%

# Imaging (CT meningitis)

#### NCCT:


- scans may be normal
- Obliteration of basal cisterns by hypo/ iso dense exudate
- en plaque dural thickening
- Popcorn calcification
- Hydrocephalus
- Sequelae of chronic meningitis
  - Infarcts

#### **CECT:**

- Abnormal meningeal enhancement (may persist)
- Leptomeningeal enhancement sylvian fissures, tentorium
- Granulomas in the basal meninges
- Ependymitis

### Imaging (MRI meningitis)

- Unenhanced scan: does not show active meningitis
  - Spine
    - CSF loculations
    - Obliteration of arachnoid space
    - Loss of cord outline in cervicodorsal cord
    - Thickening and clumping of roots in the lumbar cord
- Contrast T1: basal meningeal enhancement
  - spine
    - Linear enhancement of cord/ roots



Tuberculous meningitis. Axial contrast-enhanced T1-weighted magnetic resonance (MR) image shows florid meningeal enhancement.



Tubercular meningitis. Axial FLAIR-MR] showing marked hyperintensity of the basal cisterns and prominent temporal horns in a patient with mild communicating hydrocephalus



Tubercular spondylitis with epidural and retroabscess





Enhanced T1-weighted magnetic resonance imaging with fat suppression show intense enhancement of the subarachnoid space indicating arachnoiditis

#### Tuberculous pachymeningitis

- Rare
- Common sites of involvement are cavernous sinus, floor of middle cranial fossa and tentorium.
- Radiographic features
- **CT**

hyperattenuating solid plaque like densities (calcification may be seen)

#### MRI

- T1: hypo intense thickened duramater.
- T2 : hypo intense thickened meninges.
- T1 C+ (GAD): intense homogenous enhancement of thickened meninges.

#### Management

- Medical therapy
- Surgery
  - indications
    - Vision or life threatened by mass effect
    - Failure of response to medical therapy
    - Paradoxical increase in lesion size with therapy
    - Diagnosis in doubt

# Medical therapy

|               | Recommended dose                         |                 |                                          |                       |  |
|---------------|------------------------------------------|-----------------|------------------------------------------|-----------------------|--|
|               | Daily                                    |                 | 3 times per week                         |                       |  |
| Drug          | Dose and range<br>(mg/kg body<br>weight) | Maximum<br>(mg) | Dose and range<br>(mg/kg body<br>weight) | Daily maximum<br>(mg) |  |
| Isoniazid     | 5 (4-6)                                  | 300             | 10 (8–12)                                | 900                   |  |
| Rifampicin    | 10 (8-12)                                | 600             | 10 (8–12)                                | 600                   |  |
| Pyrazinamide  | 25 (20-30)                               | _               | 35 (30-40)                               | _                     |  |
| Ethambutol    | 15 (15–20)                               | _               | 30 (25-35)                               | _                     |  |
| Streptomycina | 15 (12–18)                               |                 | 15 (12–18)                               | 1000                  |  |

Patients aged over 60 years may not be able to tolerate more than 500–750 mg daily, so some guidelines recommend reduction of the dose to 10 mg/kg per day in patients in this age group (2). Patients weighing less than 50 kg may not tolerate doses above 500–750 mg daily (WHO Model Formulary 2008, www.who.int/selection\_medicines/list/en/).

| Intensive phase treatment     | Continuation phase |
|-------------------------------|--------------------|
| 2 months of HRZE <sup>a</sup> | 4 months of HR     |

WHO no longer recommends omission of ethambutol during the intensive phase of treatment for patients with non-cavitary, smear-negative PTB or EPTB who are known to be HIV-negative. In tuberculous meningitis, ethambutol should be replaced by streptomycin.

H = isoniazid, R = rifampicin, Z = pyrazinamide, E = ethambutol, S = streptomycin

#### WHO recommendations

- PULMONARY AND EXTRA PULMONARY DISEASE SHOULD BE TREATED WITH SAME REGIMENS. NOTE THAT SOME EXPERTS RECOMMEND 9-12 MONTHS OF TREATMENT OD TB, MENINGITIS (2,3)GIVEN THE SERIOUS RISK OF DISABILITY AND MORTALITY, AND 9 MONTHS OF TREATMENT FOR TB OF BONES OR JOINTS, BECAUSE OF DIFFICULITIES OF ASSESING TREATMENT RESPONSE (3). UNLESS DRUG RESISTANCE IS SUSPECTED, ADJUVENT CORTICOSTERIODS TREATMENT IN RECOMMENDED FOR TB MENINGITISAND PERICARDITIS(1-4). IN TUBERCULOUS MENINGITIS, ETHAMBUTOL SHOULD BE REPLACED WITH STREPTOMYCIN.
  - National collabrating centre for chronic conditions. Tuberculosis: clinical diagnosis and management of tuberculosis, measures of its preventions and control. London royal college of physicians, NICE, 2006.
     American thoracic society, CDC, infectious disease society of
  - America. Treatment of tuberculosis morbidity and mortality weekly report: recommendations and reports, 2003, 52(R-11):1-77.

WHO Treatment of tuberculosis: guidelines – 4th ed

#### Duration of treatment

#### 6 months

van Loenhout-Rooyackers JH, Keyser A, Laheij RJ, Verbeek AL, van der Meer JW. Tuberculous meningitis: Is a 6-month treatment regimen sufficient? Int J Tuberc Lung Dis 2001;5:128-35.

#### 12 months

Thwaites GE, Hein TT. Tuberculous meningitis: Many questions, too few answers. Lancet Neurol 2005;4:160-70

18 months or Longer

Santosh Isac Poonnoose, Vedantam Rajashekhar: Rate of Resolution of histologically verified intracranial tuderculomas. Neurosurgery 53:873-879, 2003

### **Treatment**

Rate of radiological resolution of intracranial tuberculoma

| Series              | duration of ATT | residual lesions % |
|---------------------|-----------------|--------------------|
| Wang 1996 (16)      | 6               | 20                 |
| Rajeshwari 1995 (6) | 9               | 12                 |
| Awada 1998 (2)      | 12              | 0                  |
| Poonnoose 2003 (28) | 18              | 69.2               |

Santosh Isac Poonnoose, Vedantam Rajashekhar: Rate of Resolution of histologically verified intracranial tuderculomas. Neurosurgery 53:873-879, 2003

### Medical management

- 4 drugs x 3-4 months
- 2 drugs x 14-16 months occasionally longer
- Regression of size from 4-6 weeks
- Most resolve in 12-14 months

R Patir, R Bhatia, Tandon PN. Surgical management of tuberculous infections of the nervous system. Schmidek and Sweet operative neurosurgical techniques 5<sup>th</sup> edition; 1617-1631

- AED to continue
- INH blocks phenytoin metabolism
- Steroids in all irrespective of age and stage

Prasad K, Singh MB. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst Rev 2008;1:CD002244.

### Resistant tuberculosis

- MDR : resistant to INH and Rifampicin
- EDR/ XDR : MDR + resistance to Quinolones and injectable second line drugs

#### SECOND LINE DRUGS

| GROUP                                    | DRUGS(ABBREVATIONS)                                 |
|------------------------------------------|-----------------------------------------------------|
| GROUP1:-                                 | PYRAZINAMIDE(Z)                                     |
| FIRST LINE ORAL AGENTS                   | ETHAMBUTOL (E)                                      |
|                                          | RIFABUTIN (Rfb)                                     |
| GROUP 2:-                                | KANAMYCIN (Km)                                      |
| INJECTABLE AGENTS                        | AMIKACIN (Am)                                       |
|                                          | CAPREOMYCIN (Cm)                                    |
|                                          | STREPTOMYCIN (S)                                    |
| GROUP3:-                                 | LEVOFLOXACIN (Lfx)                                  |
| FLUOROQUINOLOLES                         | MOXIFLOXACIN (Mfx)                                  |
|                                          | OFLOXACIN (Ofx)                                     |
| GROUP 4:-                                | <ul> <li>PARA-AMINO SALICYLIC ACID (PAS)</li> </ul> |
| ORAL BACTERIOSATIC SECOND LINE DRUGS     | CYCLOSERINE (Cs)                                    |
|                                          | TERIZIDONE (Trd)                                    |
|                                          | ETHIONAMIDE (Eto)                                   |
|                                          | <ul> <li>PROTIONAMIDE (Pto)</li> </ul>              |
| GROUP 5:-                                | CLOFAZIMINE (Cfz)                                   |
| AGENTS WITH UNCLEAR ROLE IN TREATMENT OF | LINEZOLID (Lzd)                                     |
| DRUG RESISTANT-TB                        | AMOXICILLIN/CLAVUNATE (Amx/Clv)                     |
|                                          | THIOACETAZONE (Thz)                                 |
|                                          | IMIPENUM/CILASTATIN (Imi/Cin)                       |
|                                          | HIGH DOSE ISONIAZID (High dose H)                   |
|                                          | CLARITHROMYCIN (Cir)                                |

#### Use atleast 4 drugs

- Use any first line of oral agents (group-1) that are likely to be effective.
- Use an amino glycoside or polypeptide by injection. (group-2)
- Use a fluoroquinolones. (group-3)
- Use the remaining group-4 drugs to complete the regimen of at least 4 drugs.
- For regimen with fewer than four effective drugs, consider adding 2 group-5 drugs. The total number of drugs will depend upon degree of uncertainty, and regimens often contain five to seven.

### Surgery

- Severe elevation of ICP
- Threatening life or vision
- Do not respond to drugs clinically/ radiologically
- Diagnosis in doubt
- Obstructive hydrocephalus

R Patir, R Bhatia, Tandon PN. Surgical management of tuberculous infections of the nervous system. Schmidek and Sweet operative neurosurgical techniques 5<sup>th</sup> edition; 1617-1631

Aim diagnosis/ relieve pressure

### Surgical management

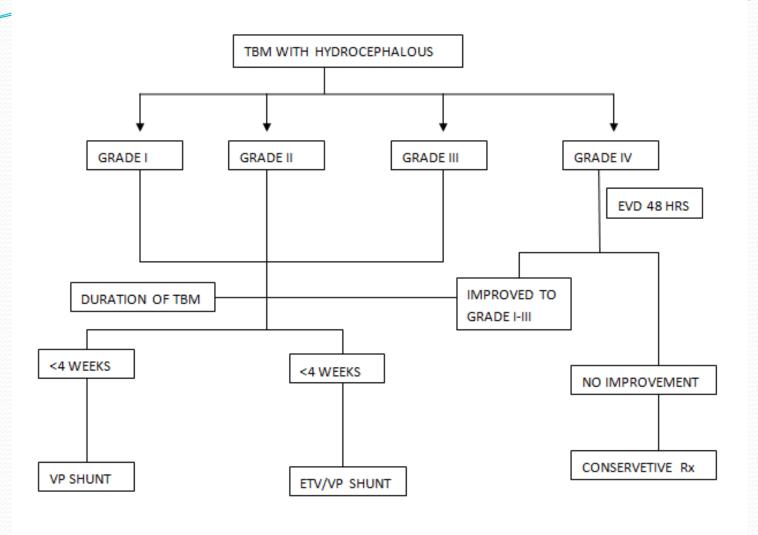
- Biopsy of the mass lesion
- Hydrocephalus
  - Communicating (commoner)
  - Non communicating

## Surgery principles

- Non eloquent areas total excision (small lesion)
- Subtotal/ partial excision (large lesion/ eloquent cortex)
- Conservative excision around vital structures
- Evacuation of central liquifactive portion in deep seated lesions
- Residual lesions may respond to medical therapy
  - R Patir, R Bhatia, Tandon PN. Surgical management of tuberculous infections of the nervous system. Schmidek and Sweet operative neurosurgical techniques 5<sup>th</sup> edition; 1617-1631
- Hydrocephalus

#### MRC GRADING FOR HYDROCEPHALOUS

| STAGE |                                                   |
|-------|---------------------------------------------------|
| 1     | FULLY CONSCIOUS, NO PARESIS                       |
| 2     | DECREASED LEVEL OF CONSCIOUSNESS, LOCALIZING PAIN |
| 3     | DEEPLY COMATOSE ± GROSS PARESIS                   |


#### **GRADING OF HYDROCEPHALOUS**

#### VELLORE GRADING

| GRADE |                                                      |
|-------|------------------------------------------------------|
| 1     | HEADACHE, VOMITING, FEVER± NECK STIFFNESS            |
|       | NO NEUROLOGICAL DEFICIT                              |
|       | NORMALSENSORIUM                                      |
| 2     | NORMALSENSORIUM                                      |
|       | NEUROLOGICAL DEFICIT PRESENT                         |
| 3     | ALTERED SENSORIUM BUT EASILY AROUSABLE               |
|       | DENSE NEUROLOGICAL DEFICIT MAY OR MAY NOT BE PRESENT |
| 4     | DEEPLY COMATOSE                                      |
|       | DECEREBRATE OR DECORTICATE POSTURING                 |

#### MODIFIED VELLORE GRADING

| GRADE |                                                |
|-------|------------------------------------------------|
| 1     | GLASS GOW COMA SCALE 15                        |
|       | HEADACHE, VOMITING, FEVER± NECK STIFFNESS      |
|       | NO NEUROLOGICAL DEFICIT                        |
| 2     | GLASS GOW COMA SCALE 15                        |
|       | NEUROLOGICAL DEFICIT PRESENT                   |
| 3     | GLASS GOW COMA SCALE 9-14                      |
|       | NEUROLOGICAL DEFICIT MAY OR MAY NOT BE PRESENT |
| 4     | GLASS GOW COMA SCALE 3-8                       |
|       | NEUROLOGICAL DEFICIT MAY OR MAY NOT BE PRESENT |



### Hydrocephalus

- Inevitable in those who survive 4-6 weeks
- Mortality 20-100%
- Grade at admission significant
- Early shunt for grade I,II

- ETV
  - 73.1% success rate for ETV in TBM with hydrocephalus
    - A chugh, M hussain et al. Surgical outcome of tuberculous meningitis hydrocephalus treated by endoscopic third ventriculostomy: prognostic factors and postoperative neuroimaging for functional assessment of ventriculostomy: J Neurosurg Pediatrics 3:000–000, 2009
- Endovascular revascularization for ischemia

- STA MCA bypass
  - The left superficial temporal artery–MCA bypass was found to be capable of preventing new ischemic events in the 21-month follow-up period
    - Martin misch, Ultrich- wilhelm et al. Prevention of secondary ischemic events by superficial temporal artery-middle cerebral artery bypass surgery after tuberculosis-induced vasculopathy in a 5-year-old child:Neurosurg Pediatrics 6:000-000, 2010

## AIIMS DATA (1975-1992)

| SUPRATENTORIAL    | 78 |
|-------------------|----|
| PARIETAL          | 28 |
| FRONTAL           | 26 |
| TEMPORAL          | 15 |
| BG / THALAMUS     | 4  |
| SELAR/SUPRASELLAR | 4  |
| ORBITAL FISSURE   | 1  |
| INFRATENTORIAL    | 50 |
| CEREBELLUM        | 44 |
| CP ANGLE          | 3  |
| TENTORIUM         | 1  |
| BRAINSTEM         | 2  |

# Thank you