ARTERIOVENOUS MALFORMATION

AVM-Introduction

Vascular malformation:

- ► AVM
- Venous malformation
- Cavernous malformation
- Capillary telangiectasia
- ► AVF

AVM-introduction

- Most dangerous vascular malformation
- Congenital lesion
- Abnormal collection of vessels wherein arterial blood flows directly into draining veins without the normal capillary beds
- Feeding arteries/ Nidus/ Draining ve
- Static/ Grow/ Regress

AVM-Presentation

- ► Hemorrhage(50%)
- ▶ Seizure
- Mass effect
- ▶ Ischemia; steal phenomenon
- ► Headache
- **▶** Bruit
- **HCP**
- ▶ Peds: hydrocephalus, heart failure

AVM-Hemorrhage

- Peak age: 15-20 y/o
- ▶ 10 % mortality; 30-50% morbidity
- ► ICH(80%)/IVH/SAH
- Risk of hemorrhage: High feeding a. pressure/V. outflow obstruction/Size/Location/Aneurysm/ Pregnancy

www.brain-surgery.com

Hemorrhage related to AVM size

- Small AVMs are more lethal than larger ones
- Small AVMs tends to present more often as hemorrhage than do larger ones ¹
- Small AVMs are thought to have much higher pressure in feeding artery 1, 2

- 1. Crawford P M, West C R, et al: Arteriovenous Malformation: Natural History in Unoperated Patients. **J Neurol Neurosuurg Psy** 49:1-10,1986
- 2. Spetzler R F, Hargraves R W, et al: Relationship of Perfusion Pressure and Size to Risk of Hemorrhage from Arteriovenous Malformations.

 Neurosurgery 37: 851-5, 1995

Annual & Lifetime risk of Hemorrhage

- Lifelong risk of bleeding: 2-4% per yr
- ➤ A study of 166 symptomatic AVMs with 24 year follow-up found the risk of major bleeding was constant at 4% per year, independent of whether the AVM presented with or without hemorrhage ³
- The AVM Study Group: Annual rate of rehemorrhage was 18% among pts who had hemorrhage at presentation; 2% among pts with no history of bleeding (306 cases) 4
- Rebleeding rate significantly lower than aneurysms.
- 3. Ondra SL, Troupp H, et al: The natural history of symptomatic cerebral arteriovenous malformation: A 24-year follow-up assessment. **J Neurosurg** 25:387-91, 1990

AVMs & Associated Aneurysms

- > 7% of pts with AVMs have aneurysms
- 75% are located on major feeding artery; probably from increased flow ¹
- ► The symptomatic one is treated first
- Although 66% of related aneurysms will regress following AVM removal, this does not always occur ⁴

4. Cunha M J, Stein B M, et al: The Treatment of Associated Intracranial Aneurysm and Arteriovenous Malformations. **J Neurosurg** 77: 853-9, 1992.

Hemodynamic Effects of AVM

Pre-op effects:

- Steal phenomenon
- AVM & aneurysm
- ► High-flow angiopathy ⁷

Post-op effects:

- Normal perfusion pressure breakthrough
- Occlusive hyperemia
- 7. Pile Spellman JM, Baker KF, et al: High flow angiopathy: cerebral blood vessel changes in chronic arteriovenous malformation. Am J Neuroradiol 1986; 7:811-5

Cerebral Steal Phenomenon

- Autoregulation curve shifts to left
- Despite cerebral arterial hypotension, focal neurological deficits are rare(<10%)</p>
- ► More likely to be local mass effect

Normal perfusion pressure breakthrough (NPPB)

- Peri-/Post-op swelling or hemorrhage
- ► Loss of autoregulation⁴?⁵
- Less than 5%
- Should be diagnosis of exclusion
- Mx: prevent post-op hypertension
- 4. Spetzler R F, Wilson C B, et al: Normal perfusion breakthrough theory. **Clin Neurosurg** 25: 651-72, 1978
- 5. Young W L, Kader A, et al: Pressure autoregulation is intact after arteriovenous malformation resection. **Neurosurgery** 32: 491-7, 1993

Evaluation-MRI

- Flow void on T1WI or T2WI
- Feeding arteries
- ► Nidus
- Draining veins

Evaluation-Angiography

- ► Tangle of vessels
- ► Large feeding artery
- Large draining veins
- Not all AVMs show up on angiography!

Angiographically occult vascular malformation (AOVM)

Evaluation-Grading

- Spetzler-Martin grade
- Outcome based on Spetzler-Martin grade:
 100 consecutive cases operated by Spetzler

TABLE 1. THE SPETZLER—MARTIN SCALE FOR EVALUATING THE RISK OF SURGERY IN PATIENTS WITH ARTERIOVENOUS MALFORMATIONS.*

Characteristic	No. of Points Assigned
Size of lesion	
Small (maximal diameter, <3 cm)	1
Medium (maximal diameter, 3-6 cm)	2
Large (maximal diameter, >6 cm)	3
Location	
Noneloquent site	0
Sensorimotor, language, or visual	1
cortex; hypothalamus or thalamus;	
internal capsule; brain stem; cere-	
bellar peduncles; or cerebellar nuclei	
Pattern of venous drainage	
Superficial only	0
Any deep	1
-	

^{*}A score of 4 or 5 is associated with the highest risk of persistent neurologic deficits after surgery. Data are from Spetzler and Martin.⁶⁰

Treatment

- Multidisciplinary approach
- Primary goal: decrease the risk of bleeding

- 1) Surgery: mainstay
- 2) Stereotactic Radiosurgery (SRS): high-risk for surgery
- 3) TAE: adjunct to 1) & 2)

American Stroke Association recommends:

- Low grade (I & II) surgery alone
- ► Higher grade(>III)-TAE before surgery

- Eliminates risk of bleeding immediately, seizure controls improves
- ► Invasive, risk of surgery

- Pre-op propranolol 20mg po QIDx3d to minimize post-op normal perfusion pressure breakthrough (NPPB)
- Peri-op labetalol to keep MAP 70-80mmHg

- Craniotomy
- Dural opening
- ► Identify the borders
- Cautery of feeding arteries

- Deep dissection of the nidus
- Securing the ventricle
- Obliterate the draining veins
- Final removal of AVM
- ► Post-resection BP challenge
 Hemostasis/ Residual nidus/ Areas prone to NPPB
- Immediate post-op/ Peri-op angiography

Intra-Op Complication

- Premature division of venous drainage
- Extensive bleeding along the deep margin
- Post-resection NPPB/ Residual AVM

- ▶ Pack the wall with Avitene & Gelfoam
- ► Immediate removal of the entire AVM

Post-Op Complications

- Subgaleal fluid collection
- Sterile meningitis
- Wound infection
- ► Intracerebral hematoma

Post-op Deterioration

- Normal Perfusion Pressure Breakthrough ⁴ post-op swelling or hemorrhage loss of autoregulation⁴ ?⁵ Mx: prevent post-op hypertension
- Occlusive Hyperemia 6 immediate: obstruction of venous outflow delayed: venous or sinus thrombosis Mx: adequate post-op hydration
- Rebleeding from a retained nidus
- Seizures

Radiation treatment

- Conventional radiation: effective in < 20% of cases</p>
- SRS: for small (Nidus<3cm) & deep AVMs</p>
- ▶ Radiation-induced endothelial cell proliferation→Obliteration, thrombosis
- Gamma knife/ Linac
- Non-invasive, gradual reduction of flow
- Takes 1-3 yrs to work, limited to small lesion

Endovascular Approach (TAE)

- Op inaccessible deep or dural feeding a.
- Usually inadequate if used alone for AVM; may recanalize

- ► Facilitates OP (less bleeding) & possibly SRS
- Can't be used alone, acute hemodynamic change, multiple procedures

Endovascular Approach (TAE)

Glue: N-butyl cyanoacrylate (nBCA), Lipiodol,

tantalum powder, D5W

- Embolization of the nidus through the feeders without any significant glue entering the draining veins
- ► In general, only 2-3 vessels are embolized per session.

Endovascular Approach (TAE)

- ► Anesthesia: MAC/ GA
- Induced hypotension with vasoactive agents, general anesthesia, or even brief adenosine-induced cardiac pause at the time of embolization to allows the glue to set
- Provocation test:
 - Sodium amytal & cardiac lidocaine injection to determine that embolization will not result in neurologic deficit

Anesthesia-related Considerations for Cerebral AVMs

- Extensive blood loss
- Pharmacological brain protection
- Non-pharmacological brain protection

Anesthesia-related considerations for cerebral arteriovenous malformations Hashimoto T, Young W L, et al

Departments of Anesthesia and Perioperative Care, Neurosurgery, and Neurology, Center for Cerebrovascular Research, UCSF

Neurosurg Focus 11 (5): Article 5, 2001

Monitor

- ► EKG/SpO₂/ETCO₂/BT/CVP
- Measurement of vascular pressure differentiate a. from v. decision of whether a vein can be sacrificed

Anesthetic Technique Choice of Agents

- Avoid cerebral vasodilators!!!
- General condition
- ► Isoflurane/N₂0
- Additional Barbiturate loading
- ► Metabolic suppression- propofol, etomidate

Brain Relaxation

- Good head position
- CSF drainage
- Diuretics/Osmotherapy
- Avoid excessive cerebral vasodilator!!!
- Modest hypocapnia with hyperventilation

Euvolemia & Pressure Control

- **Euvolemia**
- Optimal cerebral perfusion pressure

Induced Hypotension

- Aneurysm/ AVM
- Large AVMs with deep a. supply
- Barbiturate therapy

Fluid and Electrolyte Management

- Isotonicity
 Stable cardiovascular status
 Prevention of cerebral edema
 Aggressive isotonic crystalloids may worsen brain edema by decreasing colloid oncotic pressure. ⁶
- Euglycemia less than 200mg/dl
- 6. Drummond JC, Patel PM, et al: The effect of the reduction of colloid oncotic pressure, with and without reduction of osmolarity, on post-traumatic cerebral edema. **Anesthesiology** 88:993-1002,1998

Toleration of Modest Hypothermia

- Mild hypothermia(34-35° C); cerebral protection
- SE: drug metabolism
 increased rate of myocardial ischemia
 infection
 arrhythmia
 coagulopathy

Emergence & Recovery

- Post-resection BP challenge;
 Hemostasis/ Residual nidus/ Areas prone to NPPB
- ▶ BP control: most important
- **►**NE

Postoperative Management

- ► BP control
 SBP< 120mmHg x 2d
- ▶ BT control

Any Comment or Question?

