BIOMECHANICS OF THE SPINE

Presented by: Shashwat Mishra

What is biomechanics ?

- In the context of the spine:
"Biomechanics is the study of the consequences of application of external force on the spine "

Motion segment

- In the biomechanical context, the spine is treated as consisting of motion segments.
- Concept allows the laboratory study of biomechanics of the spine in vitro
- Assuming that behaviour of spinal column can be deduced from summing the behaviour of motion segments is fallacious

The vertebral column: Basic anatomy

- 33 vertebrae (7 cervical, 12 thoracic, 5 lumbar, 5 sacral and 4 coccygeal)
- A typical vertebra consists of a cylindrical body and a dorsal arch
- The dorsal arch consists of pedicle, lamina, pars interarticularis and spinous process.
- 2 primary curvatures (thoracic and lumbosacral kyphosis)
- 2 secondary curvatures (cervical and lumbar lordosis)
- Curvatures maintained by variation in the intervertebral disc heights and vertebral body dimensions.
- Center of gravity of the spinal column passes from the dens of the axis to the promontory of the sacrum.

Regional characteristics of the vertebral column

The cervical column

- Cervical vertebrae smaller
- Lamina narrow and overlap
- The pars interarticularis in the cervical spine have been termed the lateral masses
- The superior and inferior facets extend from the pars

- The cervical facets from $\mathrm{C} 2-3$ to C6-7 are oriented approximately at 45 degrees with respect to the horizontal
- Coronal orientation of the facets.

Thoracic spine

- Thoracic vertebra are somewhat heart shaped
- Uniquely, they possess costal facets at the junction of the body and transverse process for articulation with ribs
- Transitional features : upper thoracic (T14) resemble cervical, lower (T9-12) resemble lumbar.
- Spinous processes of T1, T2 , T11 and T12 are horizontal
- T3, T4 and T9, T10 are oblique
- T5 -T8 spinous processes overlap considerably and are long and vertical
- The thoracic facets are oriented along a coronal plane
- At the thoraces-lumbar junction there is change to assume a more sagittal orientation

Lumbar spine

- Lumbar vertebral bodies are the largest and typically increase in diameter as one descends
- The bodies of L1-2 vertebra are deeper dorsally, that of L4-5 deeper ventrally while L3 is transitional
- Fifth lumbar vertebra represents the transition from lumbar to sacral spine
- L5 body is taller ventrally contributing to the lumbosacral angle
- The lumbar articular facets are oriented obliquely in the sagittal plane limiting axial rotation of the spine.

Sacrum and Coccyx

- Sacrum is triangular, concave and having a relatively smooth pelvic surface.
- Dorsal surface formed by the fusion of costal ligaments and transverse processes of sacral vertebral elements.
- The fused bodies are demarcated by transverse lines that end laterally in four pair of ventral sacral foramina.

Intervertebral discs

- 23 Interverbral discs are interposed between the vertebral bodies.
- Most rostral- C2-3 disc and distally L5- S1 disc.
- They account for one third to one fifth of the height of vertbral column

- Four concentrically arranged components - Outer alternating layer of collagen fibres forming the peripheral rim of annulus fibrosus
- Fibrocartilage component that forms a major portion of the annulus
- Transitional region: annulus and nucleus merge
- Central nucleus pulposus (NP) : Mucoprotein gel
- Age related disc changes :
- loss of water content of NP and height
- Number and size of collagen fibres decreases
- Structural organisation of the discs permits them to tolerate compression, shear,torsion and bending forces
- During axial loading stress causing failure, the first component to fail is the vertebral end plate, due to herniation of the nucleus pulposus into the end plate.

Ligaments

- The longitudinal ligaments
- Anterior
- Posterior
- Ligamentum flavum
- Supraspinous ligament
- Interspinous ligament
- Intertransverse ligament
- Capsular ligaments
- Anterior longitudinal
- From occiput to sacrum covering a fourth to third of the ventral circumference of vertebral bodies.
- Consisting of three layers
- Deepest layer binds the edges of disc extending between adjacent vertebrae.
- Middle layer binds vertebral bodies and disc over three levels
- Superficial layer extends over four or five levels
- High collagen content preventing hyperextension and over distraction
- Posterior longitudinal ligament
- Begins at C2 as the tectorial membrane and extends upto sacrum
- Fibres spead out at the disc level and narrow in the middle of vertebral body
- The ligament is much thinner over the vertebral body than over the disc
- Multilayered, maximum thickness in thoracic region
- Ligamentum flavum
- Yellow ligament (flava= yellow)
- High elastin content, one of the most elastic tissues in body.
- Broad paired ligaments which connect the lamina of adjacent vertebrae
- Extend from C1-2 level to L5-S1
- Arise from ventral surface of caudal lamina and attach to dorsal border of adjacent rostral lamina.
- High elasticity, assume their original size once a flexed spine straightens or extends
- Loose their elasticity with age, impinge upon the dura when slack.
- Capsular ligaments
- Attach to vertebra adjacent to articular joints.
- They are perpendicular to the plane of facets
- Primarily prevent distraction of the joint.
- Intertransverse ligaments
- Seen only in thoracic and upper lumbar spine.
- They pass between the transverse processes and attach to the deep muscles of the back.
- Interspinous and supraspinous ligaments
- Interspinous attach from base to tip of each spinous process
- Supraspinous attach at the tips of spinous processes
- Ligament is weakest in cervical region and becomes progressively stronger caudally

Spinal canal dimensions in relation to the vertebral level

- Force deformation characteristics
- Stiffness is the ability to resist deformation (Δ force/ Δ deformation)
- Flexibility is inverse of stiffness.

Spinal motion

- Degrees of freedom is a useful concept in the description
- No of unique independent motion one vertebra can have with respect to another.
- Six degrees of freedom
- Three translational
- Three rotational, along three axes
- Significance of facet joint orientation
- In cervical spine, facets are oriented 45 degree to horizontal, almost in the coronal plane
- In thoracic spine, the orientation is intermediate allowing axial rotation
- In the lumbar spine, rotation is prevented by relatively sagittal orientation of the facets while flexion and extension is free
- Coupling
- Defined as obligatory movements of the spine (translations and rotations) that accompany a primary motion
- Principal motion is defined as the motion produced in the plane of the force
- Any associated out of phase motion is coupled
- Instantaneous axis of rotation
- Defined as the axis perpendicular to the plane of motion and passing through the points within or outside the body which is static during the motion
- Example, when opening a door, the axis of rotation passes through the hinges

Functional biomechanics of the spine

Spinal stability

- Paramount concept
- Ability of spine to maintain its pattern of displacement under physiologic loads without producing-
- Incapacitating pain
- Deformity
- Neurological deficit

Theories of spine stability

- The two column concept:
- Anterior column : vertebral body, ALL, PLL
- Posterior column : Posterior ligamentous complex (PLC) : Interspinous, supraspinous, ligamentum flavum and apophyseal joints
- Advanced by Holdworth
- Stressed upon the integrity of posterior ligamentous complex in maintaining stability.
- Unstable fractures involved disrupted PLC and one component of anterior Column.
- Three column concept:
- Better agreement with clinical observations regarding spine stability
- Anterior column : Anterior wall of vertebral body, ALL and anterior annulus
- Middle column : PLL, posterior annulus fibrosus, posterior wall of vertebral body
- Posterior column : posterior ligamentous complex.
- For instability 2 out of the 3 columns must be damaged.
- Jefferson fracture
- Diffuse axial loading of cervical spine
- Bilateral anterior and posterior arch fractures
- Biomechanically, stable till the lateral mass displacement more than 5 mm , implying transverse ligament disruption.
- Fracture of the dens
- Type1- avulsion injury of the dens. Stable
- Type 2- dens fractured along the base due to flexion/ extension injury. Unstable, because dislocation may increase
- Type 3 : produced by flexion or compression forces or both.

Lower cervical spine

- Burst fractures
- Disruption of the body and intervertebral discs
- Direct axial loading of the spine
- Theoretically should be stable as the PLC is intact
- But, mostly associated with PLL damage and disc injury making it unstable
- Biomechanically, only anterior decompression and fusion is not appropriate as it disrupts viable ALL and PLL
- Circumferential stabilization may be indicated

Thoracic spine

- Relatively narrow spinal canal
- Restriction of flexion and extension due to articulation with fixed ribs T1-T9
- Axial rotation tolerated
- 3 degree per level flexion and extension between T1 and T5. Increases progressively downwards.
- Lateral bending limited in the entire extent of the fixed ribs, increasing below that.

Thoracic spine injuries

- Mostly caused by flexion compression forces
- The bending moment developed at the vertebra in question is dependent on the length of the column and distance between the line of gravity and the centrum

Distance
 from centrum

Gravitational Ioad

Bending moment $=$ Load \times distance

- In flexion compression injury,
- distraction and damage of posterior ligament complex may be more pronounced
- Thus these injuries are more unstable than burst fractures.
- The flexion bending moment produced naturally in the lower thoracic spine (T10-12) by anatomic factors
- Termination of rib cage
- Normal thoracic kyphosis
- Orientation of the facets

Thank you

