Spinal dysraphism

Moderators
Dr A Suri
Dr Deepak Gupta

Presented by
Dr A Bisht
Spinal dysraphism

- A distinct group of congenital anomalies characterized by a failure of midline structures of ecto- and mesodermal origin to fuse

- Nicolas Tulp (1651)
 spina bifida

- Virchov
 spina bifida occulta

- Lichtenstein
 spinal dysraphism

- Von Recklinghausen (1866)
 classification

- Ruysch 1691 “with respect to cure little or nothing can be done”
Management historical

- Puncture of the sac
- Ligation of the sac suture, enterotome (Rizzoli)
- Sclerosants
- Bayer Flap closure (1892)
- Marcy Surgical closure (1895)
- Hautin closure at 18 M if IQ normal (43)
- Lorber, Matson, Sharrad closure in 1st week
Embryology

- Neural tissue development in 3rd week of gestation by induction by anteriormost part of the primitive streak (Hensens node) during gastrulation
- Neural groove formation and folding to form the neural tube
- Neurulation develops faster than embryonal axis and neural tube closes before axis extension is complete (26 days in humans)
- The remnants of the primitive streak in the caudal pole form the caudal cell mass which forms a lumen communicating with the lumen of the neural tube and gives rise to neural tissue distal to S2

MARK S. DIAS, MICHAEL PARTINGTON: Embryology of myelomeningocele and anencephaly. Neurosurg Focus 16 (2): 1-16
Embryology

- The first part of the tube to close is the cervical part
- At least 5 waves of closure in mammals
- Posterior neuropore closes at 25-27 days
- Posterior neuropore located at S2 level
Embryology

- Prolonged exposure of neural tissue to amniotic fluid leads to destruction of neural tissue
- Open neural tube- loss of CSF- low pressure in 4th ventricle- low attachment of tentorium. When cerebellar primordium grows, insufficient place to accommodate it and it herniates to the cervical canal

CLASSIFICATION (Tortori-Donati)

OPEN SPINAL DYSRAPHISM (95%)
- Myelocele
- Meningocele

CLOSED SPINAL DYSRAPHISM (5%)

With subcutaneous mass
- Lipomeningocele
- Lipomyeloschisis
- Myelocystocele (cervical, terminal)
- Meningocele, cervical myelomeningocele

Without subcutaneous mass

Simple dysraphic states
- Posterior spina bifida
- Lipoma (intradural, intramedullary, filum terminale)
- Tight filum, abnormally long cord
- Persistent terminal ventricle

Complex dysraphic states
- Dorsal enteric fistula/neurenteric cysts
- SCM
- Dermal sinus
- Caudal regression
- Segmental spinal dysgenesis

Epidemiology

- Wide variation 0.3-3.8/1000 live births
- Lowest in Asians
- Slight female preponderance
Epidemiology

- Genetic
 - Trisomy 13,18
 - Family history of NTD 3-4% (triples with each affected sibling)
 - Syndromic (acrocallosal, CHILD, Waardenberg, Fraser, Meckel - Gruber)
 - MTHFR, Folate synthetase, Pax 1,3
- Folate deficiency
- Obesity
- Diabetes with hyperinsulinemia 1% risk
- AED (valproate, carbamazepine) 1-2% risk
- Febrile illness early in pregnancy
- Pesticide, solvents, radiation exposure
- Tobacco use
Ante natal diagnosis

- MSAFP
 - 16-18 weeks
 - 2.5-3 multiples of median warrant a second USG

- USG
 - High resolution USG 100% prediction of level
 - Banana sign Chiari (93% of MMC)
 - Lemon sign hydrocephalus (80% of MMC)
 - Demonstration of defect in posterior elements

- Amniocentesis
 - Amniotic fluid acetylcholinesterase
 - Amniotic fluid AFP
 - Rise also seen with Turners and omphalocele

- MRI
 - Foetal MRI in the second trimester might be a clinically valuable adjunct to ultrasound for the evaluation of CNS anomalies, especially when ultrasound is inconclusive due to maternal obesity

Acta Obstet Gynecol Scand. 2010 Dec;89(12):1571-81
Counseling

- Ideally in the ante natal period
- It should not come as a surprise
- Parents should know what to expect
- The course of action already discussed and charted
- If detected post birth for the first time
 - Realistic expectations from therapy
 - The parental hope a determinant in health related quality of life
 - Screening in subsequent pregnancies
Ethical issues

- Termination of pregnancy
 - Legal up to 24 weeks in India
 - Right of fetus Vs maternal right
- To treat or not to treat (¿ historical)
- Quality of life?
 - 10-15% will die <6 Years despite therapy
 - 20-25% have subnormal IQ
 - 38% require bowel programme for continence
 - Social isolation, low self esteem 80% require psychiatric counseling
 - 10-15% require custodian care
 - < 10% are economically independent
Foetal surgery

- Reduced Amniotic fluid exposure of exposed neural tissue
- Birth trauma to exposed neural tissue
- Reduced shunt requirement
- Reduced incidence of Chiari
- No maternal mortality
- Perinatal foetal mortality 4%
Associated anomalies

- VACTERL (vertebral, anal, cardiac, tracheoesophageal, renal, limb)
- OEIS (omphalocele, extrophy, imperforate anus, spinal defects)
- Curriano triad (partial sacral agenesis, sacrococcygeal teratoma, anorectal malformation)
- CTEV
- Renal (90% have neurogenic bladder)
Peripartum management

- ? LSCS for all (after lung maturity before labour)
- 20-30% have latex allergy (latex precautions)
- Nurse lateral/ prone
- Avoid enteral feeding
- Closure 24-72 Hours (before colonization)
- 85-90% have HCP
- Most have Chiari malformation
Preoperative workup

- Imaging
 - Renal, GIT, cardiac
 - Spinal MRI (with fat suppressed sequences)
 - Cranial CT, USG
 - Only essential imaging to assess fitness for surgery and extent of surgery

- Hb, glucose

- Counseling parents

- Neurological assessment
Neurological assessment

- 2/3 have myelopathic features due to incomplete functional cord lesion
- Stimulus applied from distal to proximal till the infant grimaces
- Kyphoscoliosis, limb asymmetry may be due to SCM
- Obstructive apnoea, stridor, opisthotonus due to Chiari
Post operative management

- Hypothermia, hypoglycemia, hypocalcaemia
- Hb, coagulation
- Analgesia
- Infection avoidance
 - Frequent dressing
 - Antibiotics
- Nurse prone with head low
 - Avoids pressure on wound
 - CSF drainage (reduces leak)
 - Reduced tethering
Complications

- CSF collection/ Leak
 - Poor dural / wound closure
 - 4-8 days
- Wound breakdown / infection
 - Catabolic state
 - Poor feeding
 - Tension in closure / kyphosis
- Meningitis
- Pneumothorax
- Ileus / NEC
- Neurological deterioration (10%)
- Retethering
Open spinal dysraphism

- Meningocele, meningomyelocele, hemimeningocele, hemimyelomeningocele
- Posterior bony defect with prolapse of meninges and the cord
- 85% caudal thoraco lumbar spine, 10 % in the thorax and the rest cervical
- Multisegmental in 1%
- 80 90% associated with Hydrocephalus requiring shunt
- Most have Chiari II malformation
Open spinal dysraphism

- Delay in repair increases infection
- If delayed confirm negative cultures from placode
- 15% require shunt in the same sitting
- Avoid betadine contact with the placode
- Any tandem lesions dermoid, lipoma, SCM, neururentic cysts, meningocele manque should be addressed
Open spinal dysraphism (repair)

- **Aim**
 - Protect functional neuronal tissue
 - Prevent CSF loss
 - Reduce risk of meningitis by reconstruction of cord and coverings

- **Technique**
 - Isolation and tubulation of placode
 - Watertight dural closure
 - Closure of lumbodorsal fascia
 - Subcutaneous Undermining and tensionless skin closure
 - Plastic closure with flaps may be required
Closed spinal dysraphism

- Congenital spinal defects covered by intact skin
- *lesions seen*
 - Lipomeningocele
 - Lipomyeloschisis
 - Myelocystocele (cervical, terminal)
 - Meningocele, cervical myelomeningocele
 - Spina bifida
 - Lipoma (intradural, intramedullary, filum terminale)
 - Tight filum, abnormally long cord
 - Persistent terminal ventricle
 - Dorsal enteric fistula/ neurentric cysts/ Dermal sinus
 - SCM
 - Caudal regression
 - Segmental spinal dysgenesis
Manifestations of occult spinal dysraphism

<table>
<thead>
<tr>
<th>Cutaneous stigmata</th>
<th>Orthopedic deformities</th>
<th>Urologic problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric gluteal cleft</td>
<td>Foot or leg deformities</td>
<td>Neurogenic bladder</td>
</tr>
<tr>
<td>Capillary hemangioma</td>
<td>Scoliosis</td>
<td>UTIs</td>
</tr>
<tr>
<td>Subcutaneous lipomas</td>
<td>Sacral agenesis</td>
<td>Incontinence</td>
</tr>
<tr>
<td>Hypertrichosis</td>
<td></td>
<td>Delay in toilet training</td>
</tr>
<tr>
<td>Dermal sinus tract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutis aplasia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neurological signs and symptoms in different age groups

<table>
<thead>
<tr>
<th>Infants</th>
<th>Toddler</th>
<th>Older children</th>
<th>Young adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased spontaneous leg movements</td>
<td>Delayed walking</td>
<td>Asymmetric motor/ sensory</td>
<td>Back pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>development</td>
<td></td>
</tr>
<tr>
<td>Absent reflexes</td>
<td>Abnormal gait</td>
<td>Back/leg pain</td>
<td>Leg cramping/pain</td>
</tr>
<tr>
<td>Leg atrophy</td>
<td></td>
<td>UMN signs</td>
<td>Spasticity</td>
</tr>
<tr>
<td>Foot asymmetry</td>
<td></td>
<td>Painless ulceration</td>
<td>Hyperreflexia</td>
</tr>
<tr>
<td>Decreased urinary stream</td>
<td></td>
<td></td>
<td>Bowel/bladder incontinence.</td>
</tr>
<tr>
<td>Structure</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamina</td>
<td>Fusion defects, midline defects, abnormal spinous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebral bodies</td>
<td>Hemivertebrae, Butterfly vertebrae, Block vertebrae, Midline cleft defects, canal stenosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk space</td>
<td>Congenital narrowing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicles</td>
<td>Flattening, thinning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widening of spinal canal</td>
<td>Interpedicular widening, scalloping of posterior border, Midline bony spur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure of development</td>
<td>Reduced number of vertebral bodies, Absence of parts of vertebrae, sacral dysjunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinal curvature</td>
<td>Scoliosis, kyphosis, lordosis.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lipomeningocele

- Lipoma with lipoma cord interface posteriorly distracted out of the spinal canal
- Congenital lumbosacral lipomas the entire spectrum
- Dysjunction in timing of closure between the surface ectoderm and neural tube allowing mesenchyme to migrate/differentiation of caudal mass cells into lipoma
- Symptoms due to tethering/compression
- 1:4000 births F>M
- Defecits start by 1-2 years
Classification

- **Type I dorsal**
 - Attached to posterior cord
 - Distinct cord lipoma interface
 - Cord and coverings distally normal
 - Lipomeningocele/ lipo MMC

- **Type II transitional**
 - Interface continues beyond myeloschisis
 - No normal cord distally
 - Roots enmeshed in lipoma

Type III caudal
- Arise from conus/filum
- Largely/completely intradural
- Interface diffuse

Chaotic (Pang)
- Caudal portion ventral to placode
- Fusion lines blurred distally
- Location of DREZ and roots unpredictable

Surgery

• Indications
 • SC lipoma in infants > 2M with cord lipoma attachment
 • Fresh / progression of deficits
 • Undergoing scoliosis correction
 • Severe dysesthetic pain

• Goals
 • Detach cord tethering structures
 • Debulk as much lipoma as possible
 • Close myeloschisis and reconstruct tubular cord
Surgery

• Technique
 • Expose 1-2 vertebral level above and 1-2 cm below
 • Wide laminectomy
 • Detach dura from lipoma
 • Identify and separate fusion line (medial to DREZ and roots)
 • Sharp dissection rostro caudally in the white plane
 • Neural tissue after 3 sacral roots may be sacrificed
 • Pia – pia sutures with non absorbable sutures
 • Expansile duroplasty
Hypertrophic Filum terminale

- 50% Associated with sacral/ gluteal cleft dimples
- Leg weakness, numbness, sphincter weakness
- MRI conus below L2 and filum > 2 mm
- Fibrous / fatty
- VACTERL, arthrogryphosis
- TCS Symptoms may be mimicked by non functional shunt
- Surgery
 - All symptomatic
 - ? Asymptomatic
 - Identify filum/ ensure no roots on it (nerve stimulator)
 - Cauterize and divide filum
Split cord malformation

- Commoner in females 3:1
- Average presentation 4-6.5 years
- Cutaneous lesions in 71%
- Associated with MMC 6%
- Location of split
 - Lumbar 47%
 - Thoracolumbar 27%
 - Thoracic 23%
 - Cervical / sacral 1.5%
- Formation of accessory neurentric canal with communication between yolk sac and amnion
Split cord malformation

- **Type I**
 - 2 Cords in separate dural sleeves separated by bony/cartilaginous septum

- **Type II**
 - 2 cords in single dural sleeve separated by fibrous septum

Split cord malformation

<table>
<thead>
<tr>
<th>Type of Deficit</th>
<th>No. of Cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>motor</td>
<td>68 (26.77)</td>
</tr>
<tr>
<td>sensory</td>
<td>12 (4.72)</td>
</tr>
<tr>
<td>autonomic</td>
<td>18 (7.08)</td>
</tr>
<tr>
<td>motor & sensory</td>
<td>50 (19.68)</td>
</tr>
<tr>
<td>motor, sensory, & autonomic</td>
<td>34 (13.38)</td>
</tr>
<tr>
<td>motor & autonomic</td>
<td>21 (8.26)</td>
</tr>
<tr>
<td>asymptomatic</td>
<td>38 (14.96)</td>
</tr>
</tbody>
</table>

Management

- Detethering of the cord
- Excision of septum/ fibrous septae
- Look for and divide ventral tethering elements
- Conversion into single dural tube
- Associated defects addressed

Myelocystocele

- Occult spinal dysraphism with a localized, cystic dilation of the central canal of the spinal cord that is herniated through a posterior spina bifida
- 4-8% of LS occult dysraphism
- Terminal / non terminal
- No familial, sex preponderance
- Associated with OEIS
Myelocystocele

- Cystic, skin covered LS mass, in gluteal cleft
- Deficits due to associated lesions
- Theories
 - Steinboch and Cochrane: LDM in a hydromyelic cord
 - McConnell and Naidich: dilatation of terminal ventricle due to closure of terminal neourethral
- MRI trumpet like flaring of distal central canal
- Surgery for all

Closure of the dural layer (2) and reinforcement of the dural closure (3) with mobilized pedicled muscle on a lumbosacral terminal lipomyelocystocele. The terminal end of the dilated cystocele (1) is left open to communicate with the subarachnoid space distally.

Mahapatra AK, Gupta DK: Terminal myelocystoceles: a series of 17 cases. Neurosurg (pediatrics) 103: 344-352, 2005
Neurenteric cysts

- Can occur along the entire neural axis
- Male predominance
- Complicated lesions present later in life
- Pain myelopathy, meningitis acute neurological deterioration
- MRI high protein content without haemorrhage

Neurenteric cyst management

- Complete excision is the goal
- Approach anterior Vs posterior
- Aspiration reduces the cyst size and eases dissection
- Dense adhesions if previous meningitis
- Post op complication rate 23%
- Recurrence rate 11%
Dermal sinus tract

- Tracts reaching from the skin to varying structures
 - 10% subcutaneous
 - 20% between fascia and dura
 - 10% subdural
 - 60% subarachnoid space

- Location
 - 90% lumbosacral
 - ≈ 1% cervical
 - ≈10% thoracic

- The tract may traverse several vertebral levels before penetrating dura
Dermal sinus tract

- **Theories**
 - Abnormal separation of cutaneous and neuroectoderm
 - Splitting of notochord and persistence of mesenchymo cutaneous fistula

- **Presentation**
 - Majority detected by 5 years on cutaneous stigmata
 - TCS
 - Infectious, Neurological, urological, orthopedic

- **Management**
 - Surgery for all
 - If infected after infection subsides
 - To relieve mass effect in presence of infection
Meningocele

- Prolapse of meninges and CSF through a defect
- Posterior, anterior, lateral
- Absence of Chiari, Hydrocephalus, Limb anomalies Vs MMC
- Concomitant neurocutaneous lesions which may cause tethering (posterior)
- Elective surgery at 4-6 months
Meningocele (anterior, lateral)

- Commoner in females
- LS location commonly presacral
- Curriano’s triad
- Anterior approach to close dural defect and detether
Thank you