PITUITARY ADENOMAS- CLINICAL, NEURO-OPTHALMIC AND RADIOLOGICAL EVALUATION

PRESENTER – DR.PANKAJ AILAWADHI

MODERATERS - PROF. B. S. SHARMA
DR. SUMIT SINHA

PITUITARY GLAND – AN OVERVIEW

- >WEIGHS Just 600 mg
- ➤ Cranio caudal dimensions 8-10mm
- ➤ Upper border is usually flat or concave

➤ EXERCISES DIRECT OR INDIRECT CONTROL ON EVERY ORGAN SYSTEM

PITUITARY GLAND – AN OVERVIEW

Sella turcica - part of body of sphenoid bone Depth- upper limit 13mm

Length- upper limit 17mm

Width – upperlimit 15 mm

volume 1100 mm3

ADENOHYPOPHYSIS

- GLANDULAR COMPONENT
 BELIEVED TO ARISE FROM STOMODEUM
- SECRETES GH,PRL,FSH,LH,TSH,ACTH,MSH,ENDORPHINS.

ADENOHYPOPHYSIS: DIVIDED INTO

PARS TUBERALIS

PARS INTERMEDIA

PARS DISTALIS

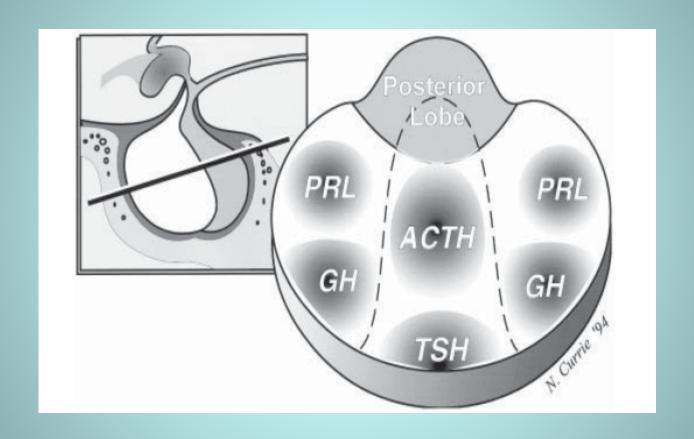
ADENOHYPOPHYSIS:

DELICATE ACINAR ARCHITECTURE

- ■IN HORIZONTAL CROSS SECTION , COMPOSED OF
- TWO LATERAL WINGS
- TRAPEZOID CENTRAL MUCOID WEDGE

SOMATOTROPHS ANTERIOR PART OF THE LATERAL WINGS

LACTOTROPHS POSTERIOR PART OF THE LATERAL WINGS


CORTICOTROPHS CENTRAL WEDGE, JUST ANTERIOR TO

POSTERIOR LOBE

THYROTROPHS ANTEROMEDIAL PART OF CENTRAL

WEDGE

GONADOTROPHS THROUGH OUT PARS DISTALIS

NEUROHYPOPHYSIS

- CONTAINS ONLY AXONS AND FENESTRATED
 CAPPILARIES
- DIVIDED INTO
- MEDIAN EMINENCE
- INFUNDIBULAR STEM
- NEURAL LOBE

PITUITARY TUMOURS

10-15% *OF ALL PRIMARY BRAIN TUMOURS

*kovcks et al .Tumours of pituitary gland.Atlas of tumour pathology

ANNUAL INCIDENCE OF 8.2 – 14.7 CASE** / 100000 POPULATION

**annegers et al.report of increasing incidence of diagnosis in women of child bearing age. Mayo clin proc

THOUGH INCIDENCE IS EQUAL, IT IS DIAGNOSED MORE COMMONLY IN FEMALES

THIRD MOST
COMMON
PRIMARY
BRAINTUMOURS

AUTOPSY
INCIDENCE: 20-25%*
OF POPULATION

molitch et al . Incidental pituitary adenomas. Am J Med Sci.1993

10%* OF ROUTINE MRI SCANS SHOW OCCULT PITUITARY MICROADENOMA.

*molitch et al . Incidental pituitary adenomas. Am J Med Sci.1993

BETWEEN 3RD – 6TH DECADE OF LIFE

PITUITARY TUMOURS

GENETICS

MEN 1

3% OF ALL PITUITARY TUMOURS

AUTOSOMAL DOMINANT DISORDER

VARIABLE PENETRANCE

OCCCURS IN 25% OF AFFECTED PATIENTS with MEN 1

PRL OR GH MACROADENOMAS

PITUITARY TUMOURS

ADENOHYPOPHYSIS

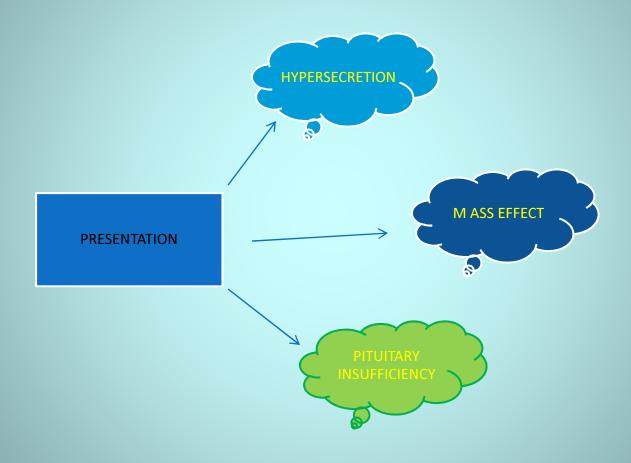
PITUITARY ADENOMAS

NEUROHYPOPHYSIS

METASTATIC TUMOURS

PRIMARY : RARE -GLIOMA' S,GRANULAR CELL TUMOURS,HEMARTOMAS

PITUITARY ADENOMAS


FUNCTIONING YOUNG ADULTS NON FUNCTIONING
WITH INCREASING
AGE

Adenoma type*	Prevalence %
Prolactin cell adenoma	30
GH cell adenoma	15
ACTH cell adenoma	10
Gonadotroph adenoma	10
GH/PRL cell adenoma	7
TSH cell adenoma	1
Nonfunctioning adenoma	25
	* kovcks et al .Tumours of pituitary gland.Atlas of tumour pathology .1986

PITUATARY ADENOMAS

GROSS	: YELLOWISH GREY TO PURPLE, SOFT FLUID TO CREAM TEXTURE
HISTOL	OGICAL: CELLULAR MONOMORPHISM
	LACK OF ACINAR ORGANIZATION
	UNIFORM CYTOPLASMIC STAINING, PLEOMORPHIC CELLS, PROMINENT NUCLEOLI, MITOTIC FIGURES.

PITUATARY ADENOMAS

HYPERSECRETION

70% OF PITUITARY ADENOMAS ARE ENDOCRINOLOGICALLY ACTIVE

MOST COMMON MODE OF PRESENTATION

PRESENTATION VARIES ACCORDING TO THE HORMONE IN EXCESS

PITUITARY INSUFFICIENCY

BY COMPRESSION OF NON TUMOUROUS PITUITARY, PITUITARY STALK, HYPOTHALAMUS.

CHRONIC PROCESS, CAN
BE ACUTE AS IN
PITUITARY APOPLEXY

GONADOTROPHS MOST VULNERABLE

MASS EFFECT

HEADACHE

VISUAL LOSS

HYDROCEPHALUS

INTRACAVERNOUS EXTENSION

HARDY'S Classification

- Microadenomas Grades 0 and I
- Macroadenomas Grades II to IV
- > Grade 0 : Intrapituitary microadenoma with
- normal sellar floor
- ➤ Grade I : Normal-sized sella with asymmetric floor
- ➤ Grade II : Enlarged sella with an intact floor
- ➤ Grade III: Localized erosion of sellar floor
- ➤ Grade IV: Diffuse destruction of floor

Modified Hardy Wilson Classification

Type A: Tumor bulges into the chiasmatic cistern

Type B: Tumor reaches the floor of the 3rd ventricle

Type C: Tumor is more voluminous with extension into the 3rd ventricle up to the foramen of Monro

Type D: Tumor extends into temporal or frontal fossa

TYPE E: Extradural spread (extension into or out of the cavenous sinus)

Pathoologic Classification

Chromophobic – Non-functioning

Basophilic – Cushing's

Acidophilic - Acromegaly

Mixed

WHO Classification

Five-tiered system

- Clinical presentation and secretory activity
- Size and invasiveness (e.g. Hardy)
- Histology (typical vs. atypical)
- Immunohistologic profile
- Ultrasturctural subtype

PITUITARY ADENOMAS

A. PROLACTINOMA

- Most common primary tumour of pituitary
- 30% of all pituitary adenoma

```
Female: male = 20: 1 for microadenoma
```

1:1 for macroadenoma

- Characterized by hyperprolactinemia
- Prolactin
 - < 25 ng/ml normal
 - 25-150ng/ml prolactinoma, stalk effect, drugs,
 - Hypothyroid
 - > 150ng/ml prolactinoma(pure or mixed)
 - > 1000 ng/ml invasive prolactinomas

Causes of Hyperprolactinemia

Medications

Psychotropic (e.g., haloperidol, resperidol)

Antidepressants (e.g., amoxapin)

Estrogen

Opiates

Calcium channel blocker (verapamil)

Antihypertensives (α methyldopa, reserpine)

Dopamine antagonists (domperidome, metoclopramide)

Pituitary adenoma

Prolactin-secreting adenoma

GH-secreting adenoma

Secondary hyperprolactinemia, usually a macroadenoma

Other pituitary lesion, e.g., metastatic, sarcoid, aneurysm

Hypothalamic lesion

Head trauma

Pregnancy

Spinal cord lesions

Chest wall trauma

Nipple stimulation

PROLACTINOMAS

CLINICAL PRESENTATION

HYPOGONADISM

Menstrual irregularities like secondary amenorrhea, delayed menarche, oligomenorrea, infertility.

Galactorrhea

Decreased libido

HEADCACHE

VISUAL DISTURBANCES

HYPOPITUITARISM

PSYCHOLOGICAL

PITUITARY ADENOMAS

B. GROWTH HORMONE SECRETING PITUITARY ADENOMAS

Growth hormone

Most abundant pituitary hormone

Secretion is pulsatile

Physiological excess seen in stress, trauma, sepsis, estrogen replacement

Exerts it's action through IGF -1

GROWTH HORMONE SECRETING PITUITARY ADENOMAS

- > Equal incidence in males and females
- more than 60% are macroadenomas
- > 4th and 5th decade
- > 15% Of all pituitary tumors
- plurihormonal
- Overall mortality is increased 3 folds as compared to age matched controls

GROWTH HORMONE SECRETING PITUITARY ADENOMAS

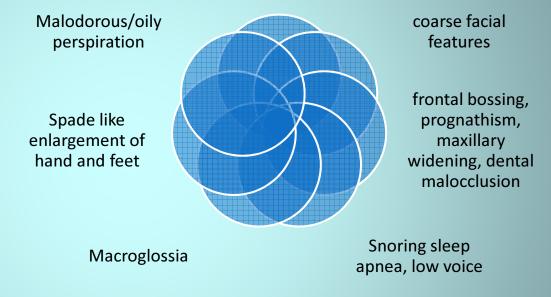
GH excess

Before epiphyseal closure - gigantism

Beyond puberty - acromegaly

DIVERSE MANISFESTATIONS

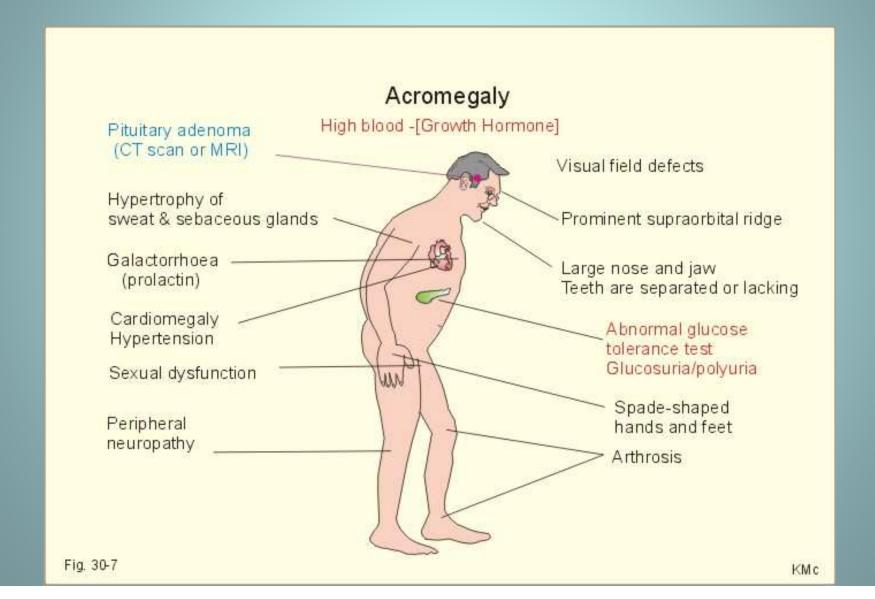
2. CARDIOVASCULAR


HYPERTENSION CARDIOMYOPATHY ARRHYTHMIAS

3. Musculoskeletal

Arthropathies
Kyphosis
Spinal stenosis
Barrel chest

Osteoarthritis


1. BONE AND SOFT TISSUE-

5. Diabetes mellitus

4. Increased incidence of premalignant polyps/ colonic cancers

Diverse manifestations

DIAGNOSIS

- Random GH not useful gives false positive and false negative results
- Insulin like growth factor 1 (IGF-1) best for screening
 represents average daily GH secretion
- Insufficient GH suppression on oral glucose
 tolerance testing gold standard to confirm diagnosis:75 mg
 of glucose load normally suppresses GH< 2ng/ml RIA. GH nadir >2ng/ml
 RIA with adenoma confirms it

Pituitary adenomas

Cushing's disease

5 to 10 times more common in females than males

3rd and 4th decade

10-15% of all pituitary tumors

Highest morbidity of all pituitary hypersecretory disorders

Most common cause of death is cardiovascular complication

CUSHING'S DISEASE

Ch. Exposure of tissues to excessive cortisol **Moon facies** Centripetal obesity Buffalo hump Thin skin ,purple abdominal striae, ecchymosis Psychological Glucose intolerance Hematopoietic features include leukocytosis, lymphopenia, eosinopenia Osteoporosis, proximal myopathy, Impaired immune function Hirsutism, acne menstrual irregularities in females Oligospermia, impotence in males

Diagnosis

?Primary Cushing syndrome(Cushing's disease)

Cushing 's syndrome

??secondary hypercortisolism(ectopic Cushing's syndrome)

???primary hypercortisolism(adrenal Cushing syndrome)

Diagnosis

24 hr urinary free cortisol(>100mcg)1 and 17 OH-corticosteroids(>12mg)

1 mg overnight dexamethasone test- best screening test

Low dose dexamethasone suppression test

High dose dexamethasone suppression

Plasma ACTH levels

Inferior petrosal sinus sampling

INVESTIGATION PROTOCOL

- History and physical examination
- Neuro- ophthalmology:
 Acuity, field, fundus and movements
- Hormone levels basal hormone and dynamic testing
 Aim- hypersecretory state/insufficiency
- Radiology (a) X-Rays
 - (b) MRI
 - (c) NCCT/CECT
 - (d)PET/DSA
- Routine blood investigation

OPTIC NERVE consists of 1.5 million fibres.

Total length is 5 cm of which 12-16 mm is intracranial.

Both optic nerves after coming out of optic canal rise by 45 degrees and meet to form optic chiasm

OPTIC CHIASM can be

Prefixed 15%

Normal 70%

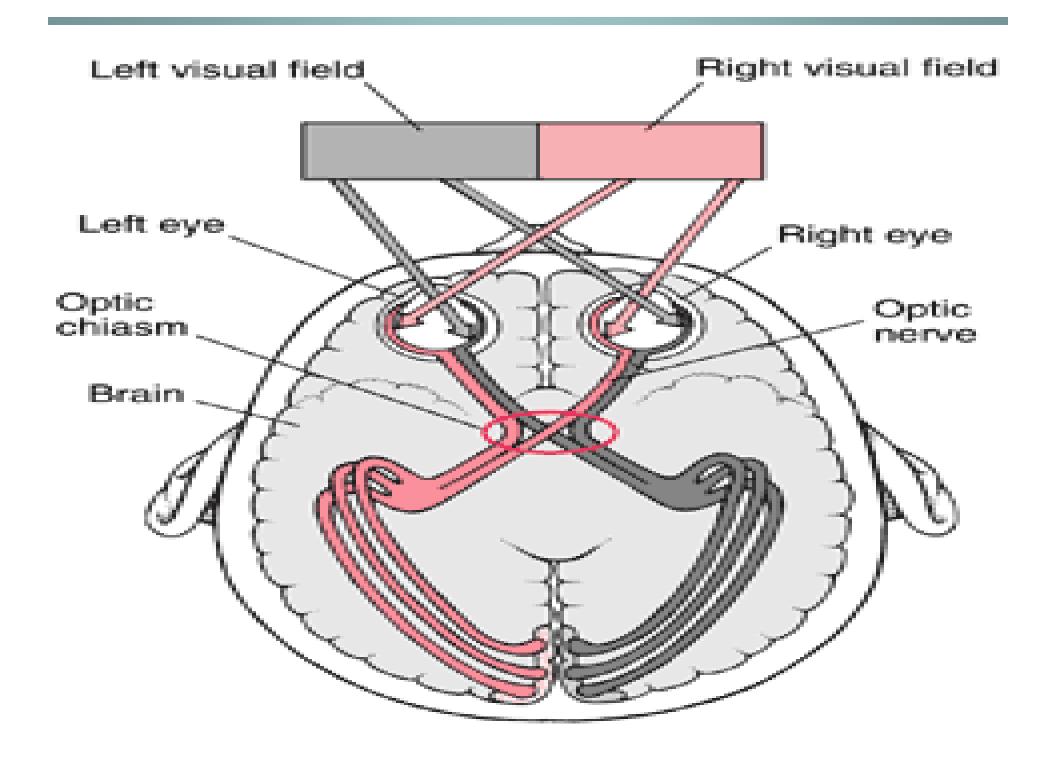
Post fixed 15%

With in the chiasm

PMB lies in the middle

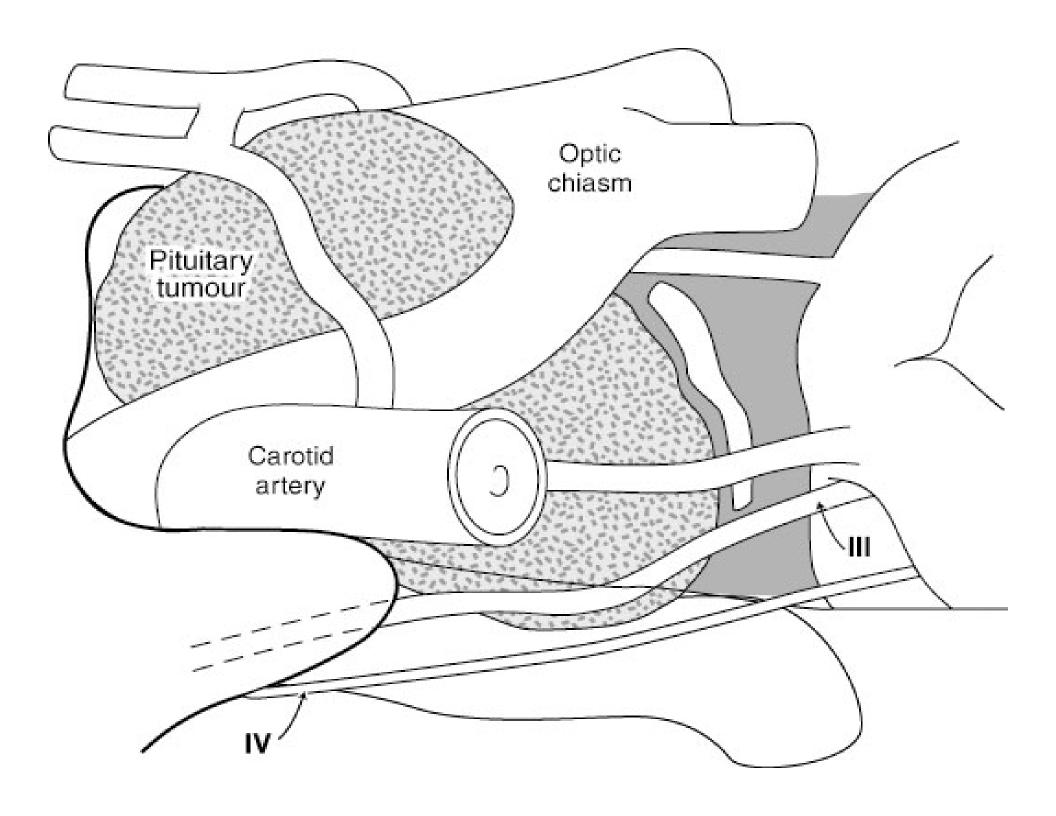
Temporal hemi retinal fibers pass ipsilateraly

Nasal hemi retinal fibers decussate


Optic chiasm decussation

Inferior nasal fibers - anteroinferior

Superior nasal fibers - posterosuperior


PMB

in the middle primarily postero superiorly

Enlarging pituitary adenoma may compress

- Optic chiasm
- Optic nerve in patients with postfixed chiasm
- Optic tracts in patients with prefixed chiasm
- 3rd, 4th, 6th nerves with cavernous sinus extension causing diplopia
- Diplopia evaluation:: 3 principles
 - abnormal image is always peripheral is always from the paretic eye distance between the image increases on looking in the direction of paretic muscle
- Third ventricle leading to hydrocephalus

Visual evaluation in a case of pituitary adenoma includes examination of:

- Visual acuity
- Colour vision
- Visual fields
- Opthalmoscopy
- Pupils
- Extraocular movements

VISUAL ACUITY
Eye's ability to resolve details

- Neurosurgically, patients best corrected visual acuity is pertinent
- Distant vision by Snellen's chart placed at 6 m where accommodation is relaxed and light rays are parallel
- Near vision by rosenbaum's pocket chart held at a distance of 14 inches

COLOUR VISION

Loss of colour vision precedes other visual deficits

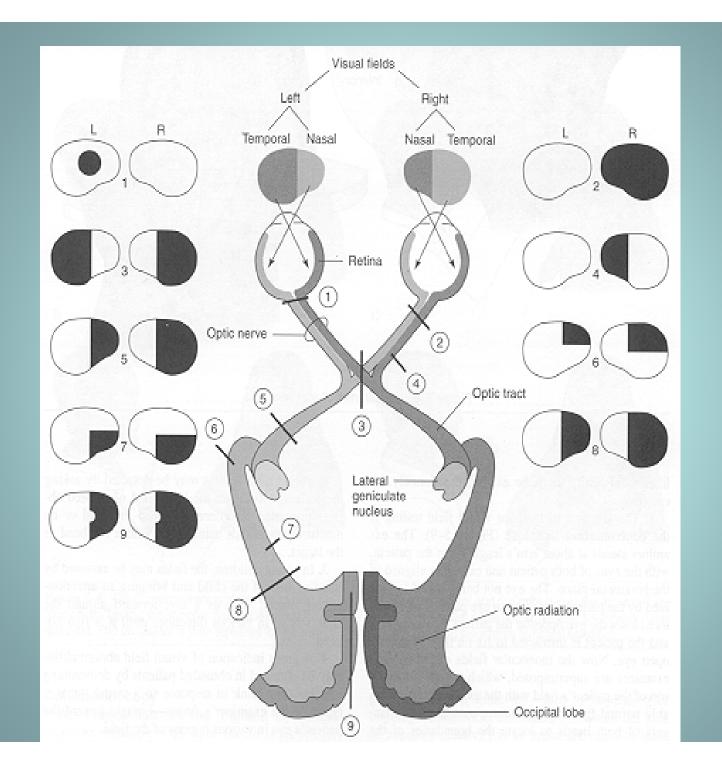
In neurosurgical disease, red perception is lost first described as red desaturation or red wash outs

Ishihara/hardy ritter rand charts used

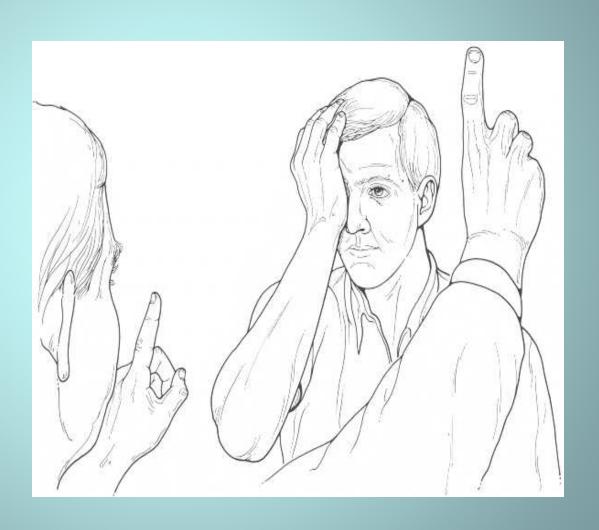
Visual fields

90 -100 deg temporally

60 deg nasally


50-60 deg superiorly

60-75 deg inferiorly


With binocular vision, VF of both eyes overlap

Visual fields are analyzed by Confrontation method Goldman's perimeter Humphrey's field analyzer

Confrontation method

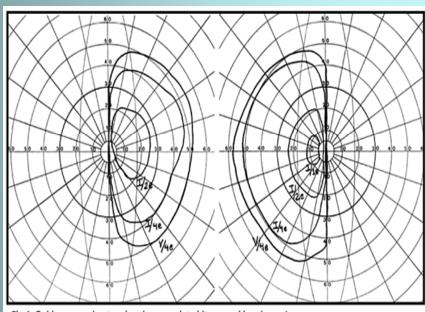
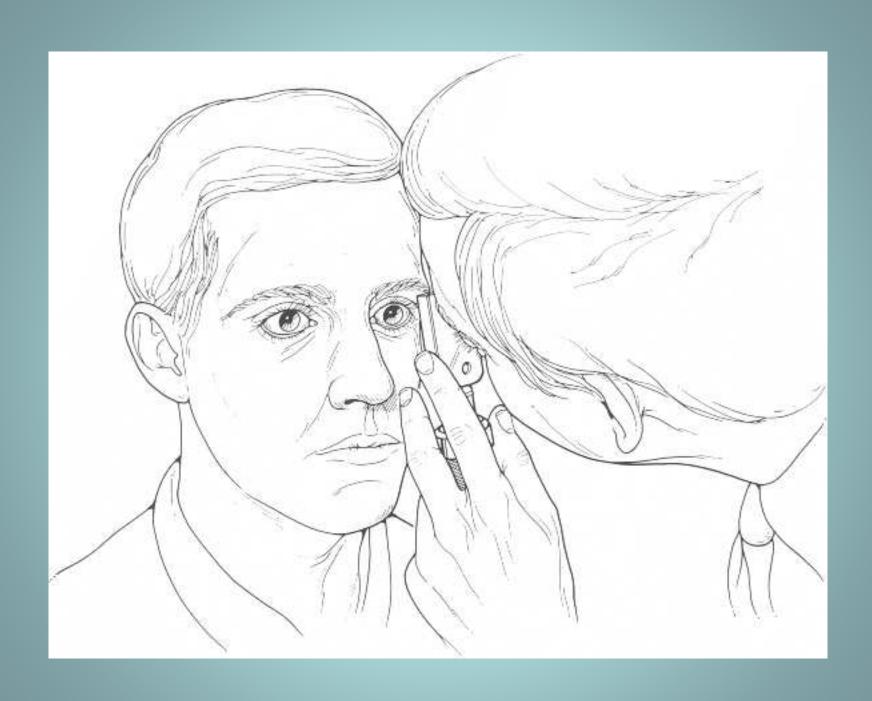
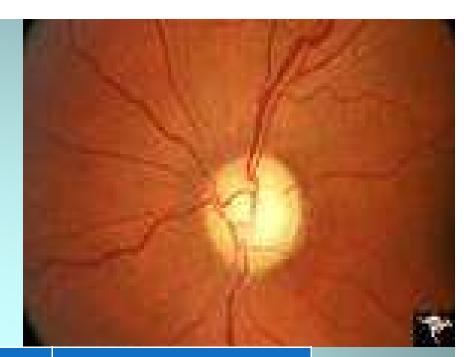


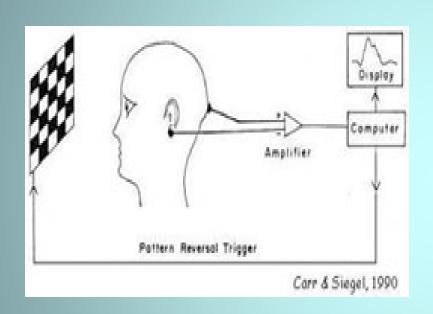
Fig 1. Goldmann perimetry, showing complete bitemporal hemianopia.

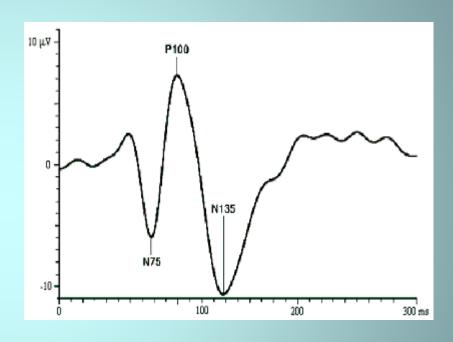


Goldman's perimeter


Humphrey's field analyzer

Pituitary adenoma can cause primary optic atrophy

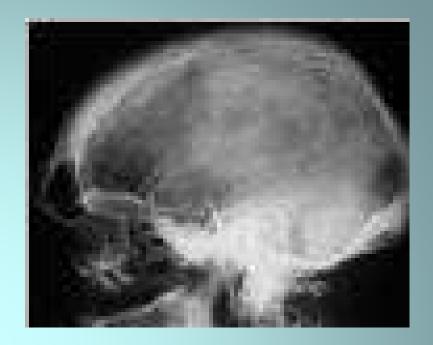



	primary	secondary
Colour of disc	white	grey
Border of disc	Sharp	Blurred
Arteries and veins	Normal or reduced	Arteries thin, veins dilated
Distribution	May affect one sector	Entire disc affected
Causes	Optic nerve/retinal damage	Papillitis/papilledema
Lamina cribrosa	visible	Not visible

VEP

- Evoked electro physiological potential that can be extracted using signal averages from EEG activity recorded at the scalp.
- Provides diagnostic information regarding the functional integrity of visual system.
- Measures the time taken for visual stimuli to travel from eye to occipital cortex.
- > Particularly useful in infants

VEP


TECHNIQUE

NORMAL TRACING

Radiology

- X- Rays:
- Requires proper alignment of posterior clinoid processes
 - widening of sella
 - destruction of sellar floor
 - relation of median sphenoidal septum
 - aeration of sphenoid sinus

XRAY findings in ACROMEGALY

CT HEAD

CT HEAD is especially useful for:

Evaluating bony structures adjacent to adenoma

 Detecting calcifications in association with macro adenoma

CT HEAD

NCCT+ CECT head/ sella with thin coronal cuts:

Neck hyper extended(Reduces dental artifacts)

1.5 -2.0 mm cuts from tuberculum to dorsum sella

MICROADENOMAS

Focal hypo intensity

Increased vertical height

Asymmetrical convexity of superior surface

MACROADENOMAS

Isodense or heterogenous with mixed iso and hypo areas intense contrast enhancement

- Better visualization of optic apparatus/carotids
- Multiplanar display

Coronal images

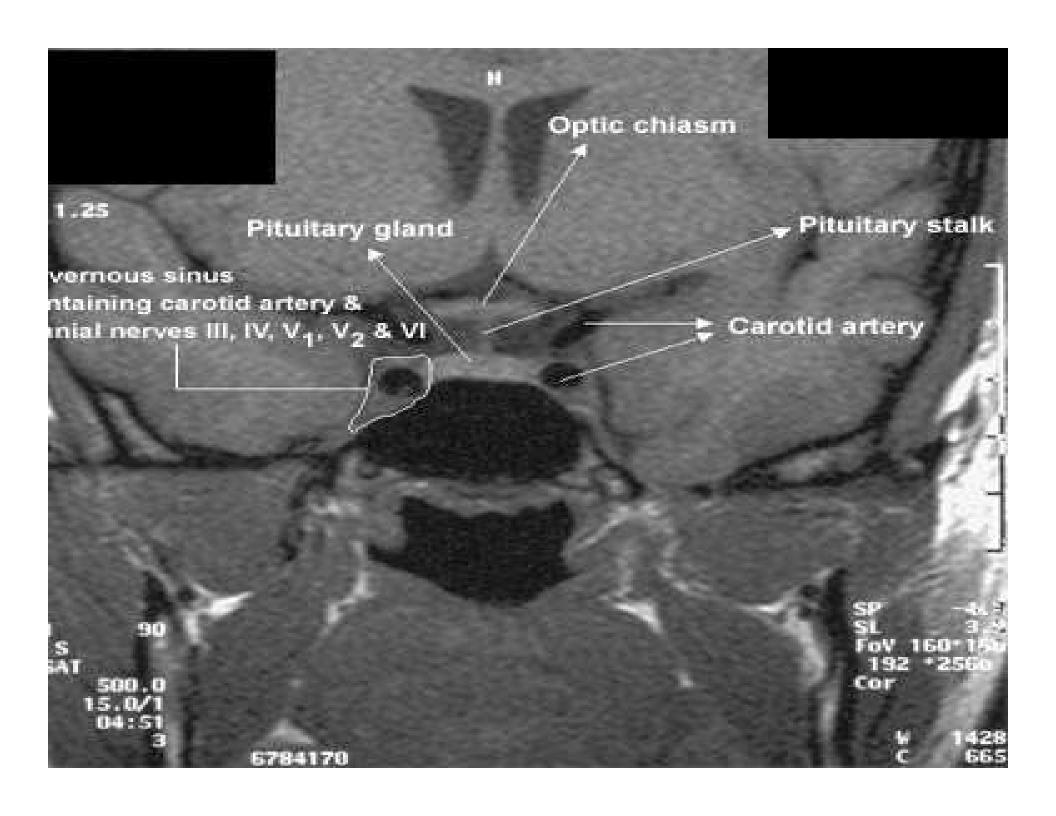
Examining asymmetries

Minimal volume artifacts

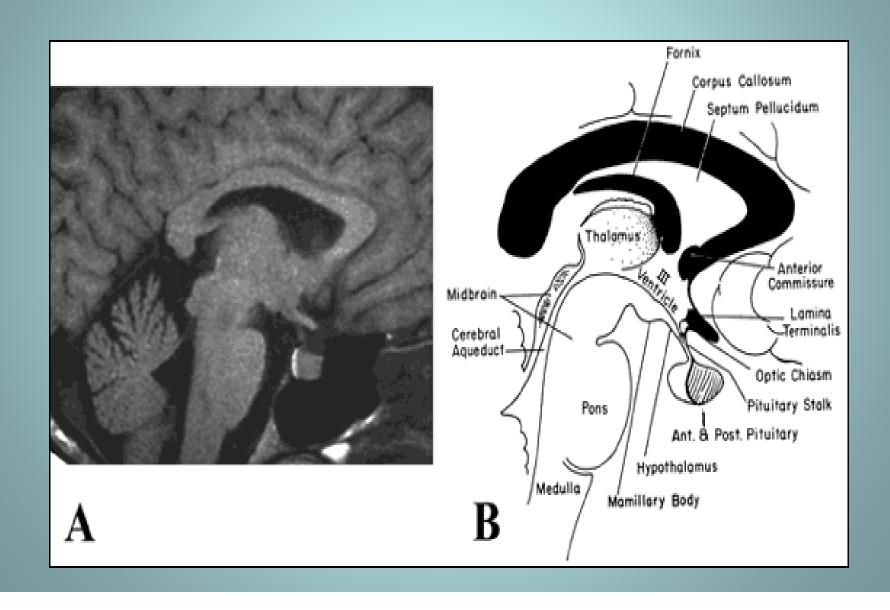
Sagittal images

Orientation of pituitary in relation to sphenoid sinus

Axial images

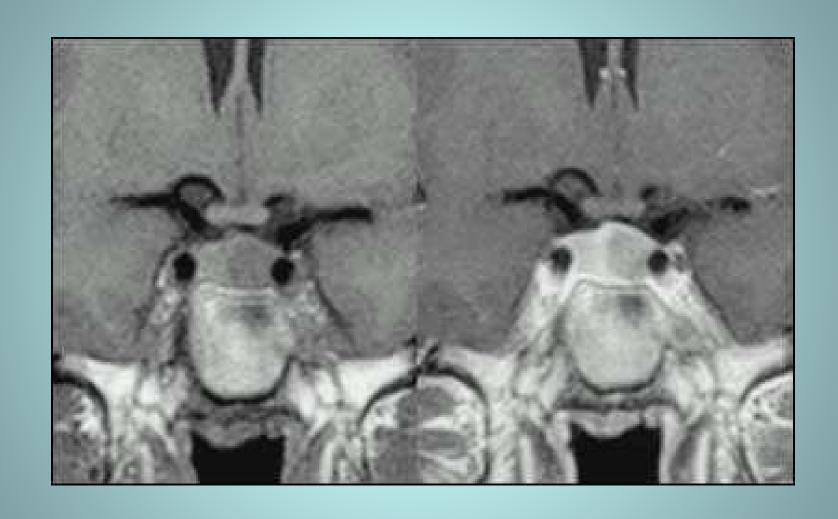

Useful in lesions with parasellar extension

Sensitivity for pituitary adenomas 90% Sensitivity post contrast 95%


- Routine 1-2 T MRI produce 2-3 mm slices
- Newer techniques: reduce false negatives and can reduce acquisition time
- Volume imaging techniques(3 –D Fourier transform)
- II. Fast spin echo

T₁W

- more sensitive
- Better anatomical details of extra axial structures
- Obtained in shorter time period
 Normal anterior lobe is intermediate grey
 Posterior lobe is bright
- Paramagnetic contrast agents further improve delineation



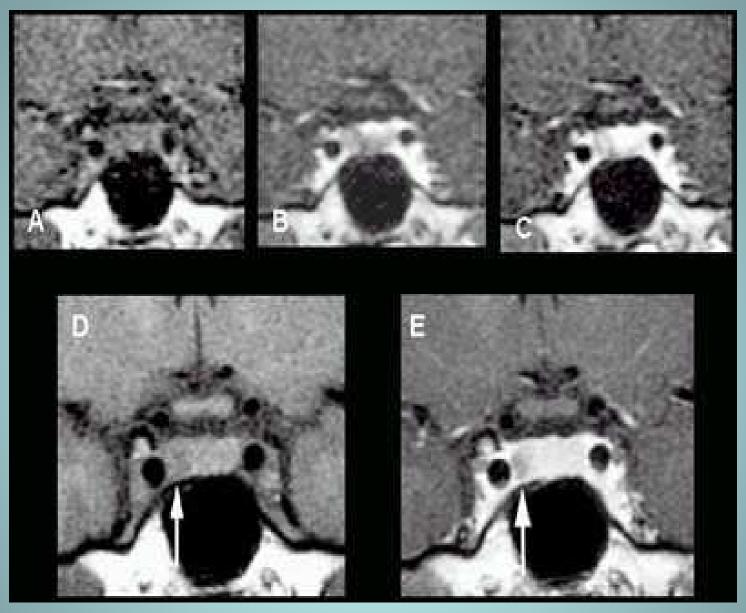
Pituitary -normal anatomy

Microadenoma

Seen as area of focal hypo intensity
Usually well defined, laterally situated
Focal convexity upward
Displacement of stalk to opposite side
Relative hypo intensity on immediate post contrast sequences

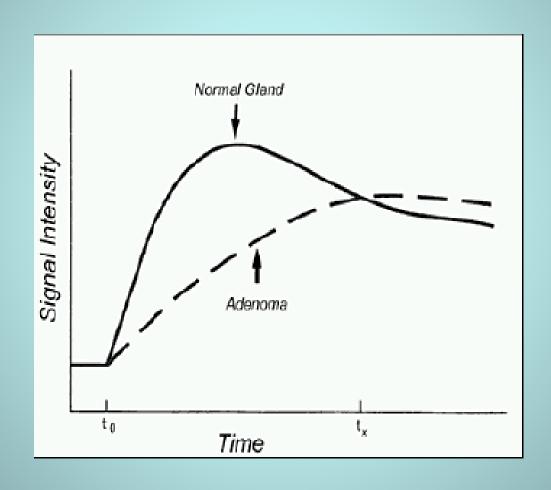
PITUITARY ADENOMA – RELATIVELY HYPOINTENSE

Dynamic imaging


Consists of a series of images at the same location to detect temporal changes in the signal intensity

Sequential coronal images at 20-30 sec intervals following contrast injection

Slow uptake and slow wash out of contrast by pituitary adenomas


*Avg time of enhancement onset in normal pituitary 43sec
Avg time of enhancement peak in normal pituitary 112 sec
Avg time of enhancement onset in pituitary adenoma 110sec
Avg time of enhancement peak in pituitary adenoma 188sec

Indrajit et al:value of dynamic mri in imaging of pituitary adenomas;indian journal of radiology and imaging: 2001

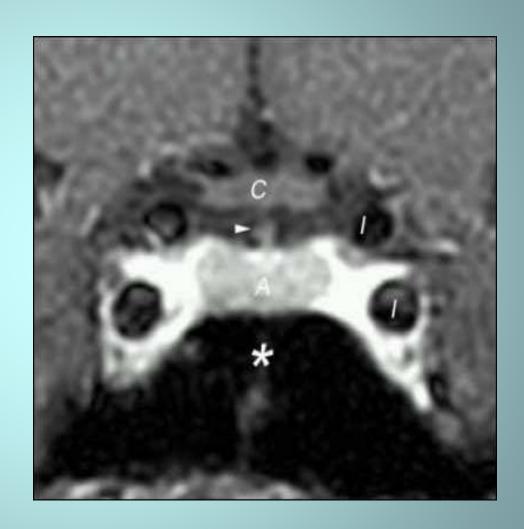
DYNAMIC SCAN SHOWING DELAYED CONTRAST UPTAKE BY ADENOMA

Dynamic MRI

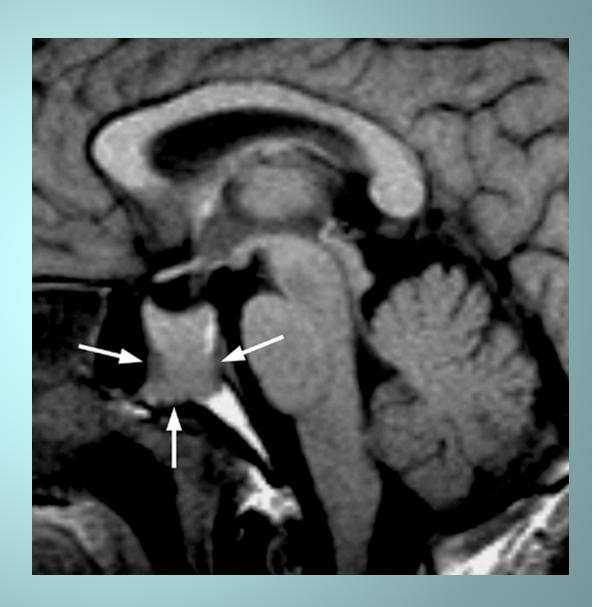
Macroadenoma

soft tissue sellar mass of intermediate signal

intensity on T1W images


Hyperintense on T2W

Enhancing diffusely on contrast

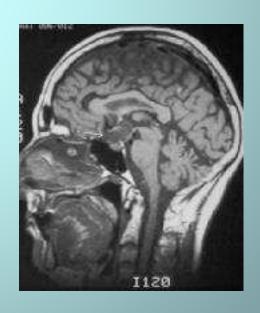

Superior spread most common

(Grows through diaphragma sellae - figure of 8 image)

CONTRAST ENHANCED
IMAGE SHOWING
RELATIVELY LESS
CONTRAST ENHANCEMENT
OF PITUITARY ADENOMA
AS COMPARED TO
CAVERNOUS SINUS

Pituitary adenoma showing primary infrasellar growth leading to destruction of sellar floor

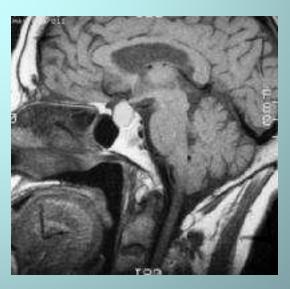
DIFFERENTIALS


- CRANIOPHARYNGIOMA
- RATHKE'S CLEFT CYST
- MENINGIOMAS ARISING FROM TUBERCULUM SELLA, PLANUM SPHENOIDALE, ANTERIOR CLINOID, POSTERIOR CLINOID, MEDIAL SPHENOID WING
- ANEURYSMS OF CAVERNOUS/SUPRACLINOID ICA, RARELY BASILAR TOP
- EMPTY SELLA TURCICA
- CHORDOMAS
- DERMOIDS/EPIDERMOIDS
- METASTASIS ESPECIALLY IN SKULL BASE

CRANIOPHYRNGIOMAS

SUPRASELLAR LOCATION
ON CT-HETEROGENOUS
DENSITY MASSES WITH
AREAS OF CYST
FORMATION AND
CALCIFICATION
SOLID TISSUE IS CONTRAST
ENHANCING

ON MRI VARIABLE SIGNAL INTENSITY LESIONS
CYSTS ARE USING HIGH SIGNAL



GERMINOMAS

SEEN USUALLY IN
CHILDREN
(PINEAL REGION)
WHEN SUPRASELLAR
MIDLINE IN LOCATION,
BEHIND INFUNDIBULUM
HYPO ON T1W, HYPER ON
T2W, CONTRAST
ENHANCING

RATHKE' CLEFT CYST ANTERIOR HALF OF SELLA TURCICA IN FRONT OF PITUITARY STALK

PITFALLS

False negatives

Especially with Cushing's disease in conventional spin echo MRI

Pneumatized anterior clinoid process

False positives

Small pars intermedia cysts

Clinically silent infarcts

Foci of necrosis

ROLE OF PET IN PITUITARY ADENOMA

Primarily for monitoring treatment

 11-C- methionine and 18 – FDG for metabolic mapping.

 Highest metabolic rate with prolactinoma followed by growth hormone tumors.