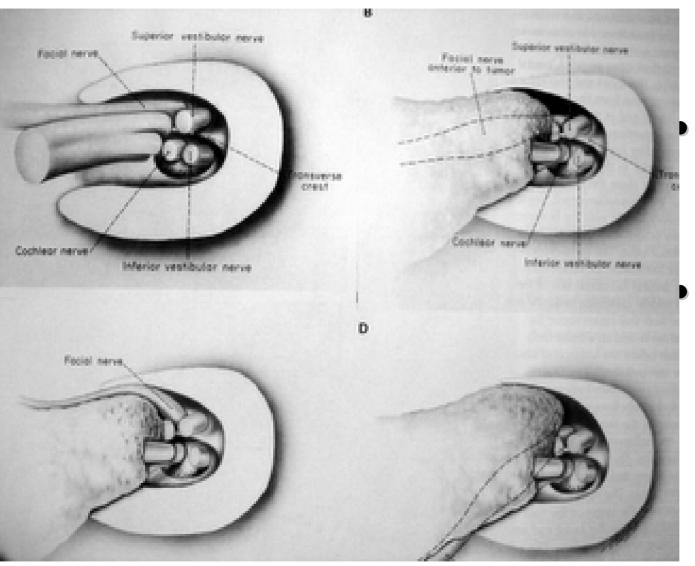
ACOUSTIC NEUROMA: SURGICAL APPROACHES, CRANIAL NERVE PRESERVATION AND REHABILITATION

Presented by : Faiz Uddin Ahmad


- Surgical anatomy
- Approaches: SO, others- indications, advantages, problems
- Facial nerve and hearing preservation
- Facial nerve repair/transfer and facial reanimation

- Facial N- 4 landmarks
- Silvery white vs. dull yellow

- <u>AICA-</u>
- Premeatal RPA, IAA
- Meatal SAA
- Postmeatal -?
- Inferior displacement usually

<u>Facial N displacement</u>: Ant 70% Sup 10% Inf 13% Post 7%

<u>Shape:</u> Thin bundle 2/3 Splayed over capsule 1/3 (Reverse in NF2)

 Transverse (falciform) crest
 Vertical crest (Bill's bar)

Grading:

- <u>Koos</u>: (Grade 1-4) upto 1, 2, 3, >3 cm (intracanalicular+ cisternal)
- <u>Ojemann</u>: (small, med, large)<2, 2-3 >3cm (intracisternal)
- <u>Samii</u>: >3×2cm large, rest small. (both intra+extrameatal), also T1, T2, T3ab, T4ab
- <u>Shekhar</u>: (small, med, large) <2, 2-3.9,
 >3.9 cm (only intracisternal)

Treatment options: No strict guidelines

- <u>Observation</u>: elderly patient with small tm and mild symptoms/ only auditory symptoms/ incidental finding
- <u>Radiosurgery</u>:
- Enlarging tm, usually less than 2 cm, esp in elderly patient
- Residual/ recurrent tm after Surgery
- Patient decision
- Fractionated RT: large Tm in only hearing ear
- <u>Surgery-</u> all others

Only hearing ear:

- Stable hearing FU with MRI and PTA
- Progressive hearing loss- choice discussed with patient
- <u>Options</u>: subtotal removal/complete removal with attempt to save hearing/ fractionated RT/Trans lab removal and placement of brainstem auditory implant !

Hydrocephalus

- Avoid shunt unless patient very sick from raised ICP
- Steroids/ intraop EVD
- Elderly patient with hearing loss and HCPonly VP shunt may s/m be required.

Suboccipital approach

- Sir Charles Balance 1894 finger
- Cushing 35%,11%, 2%
 bilateral craniectomies, subtotal removal
- Dandy 1925- first total removal (advocated- ventricular tapping, open cisterna magna, resect lateral third cerebellum, unroof IAC)

Mortality overall 22%, Later 9%

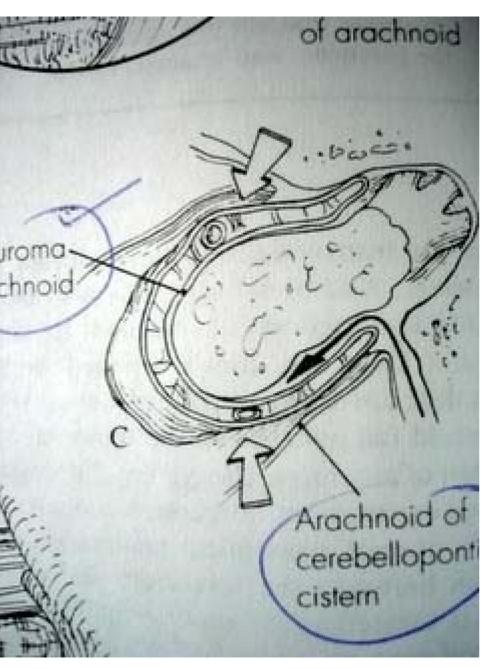
<u>Adv:</u>

- Good exposure
- Even large Tm
- Facial + hearing preservation
- Direct visualization of vessels

<u>Disadv:</u>

- Poor exposure of lat end of canal
- Cerebellar retraction

Position: Surgeon's preference


- Sitting: air embolism, hypotension, surgeon discomfort, but clean field
- Semi sitting:
- Lateral: BPI
- Supine oblique: Cervical spondylosis

• Bone over lat 2/3 of cerebellum exposed

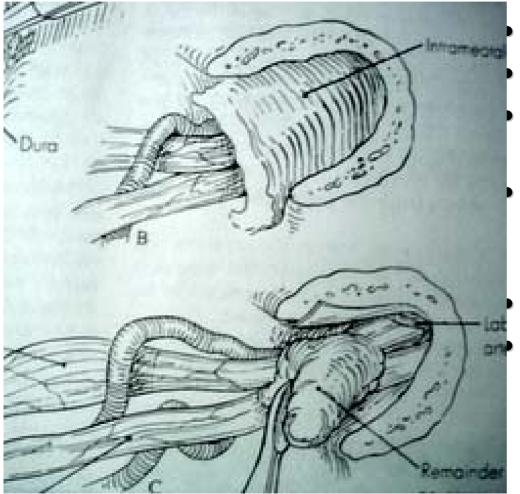
• Craniotomy vs. craniectomy

Cerebellum retracted superomedially

Drain CSF

Petrosal vein coagulated? Stimulate capsule for 7th Nerve

If visible, identify LCN and protect them early, they have low threshold for neuropraxia


Dissection b/w double layer of arachnoid and capsule

Don't coagulate arachnoid on surface

- Internal decompression (CUSA/laser/biopsy forceps) and centripital tm fall
- Push arachnoid with vessels back-"Arachnoid belongs to the pt"
- Debulk Tm
- Dissect upper pole first in large tm- 5th nerve is easily identifiable

- Look for 7th nerve medially near the brain stem-stimulate
- Save AICA
- Dissect along the 7th nerve from <u>medial to</u> <u>lateral</u>
- sharp dissection
- Cut arachnoidal bands b/w tm and cranial nerves

- Drill post wall of IAC 180° (1 cm)
- IAC runs 5-10 mm below and parallel to attachment of tent
- Check distance from porus to PCC in CT (8-13mm)
- High jugular bulb 10-50% (def)
- Constant irrigation with fluids at body temp. and diamond drill later

- Dissect medial to lateral
- Sharp dissection
- Most difficult part is at porus
- Dissect in easiest plane, so that least traction on nerve
 - Change directions Dental mirrors/ endoscope to confirm complete excision

- Go for subtotal removal in:
- Hearing preservation in large tumors
- Very thin facial N with thick adhesions to tm
- Elderly debilitated patient with brain stem compression

Translabrynthine Approach

- Panse 1904
- House 1964

<u>Adv:</u>

- Early identification of facial N
- Absence of significant cerebellar retraction
- Short distance b/w surface and tumor

<u>Disadv:</u>

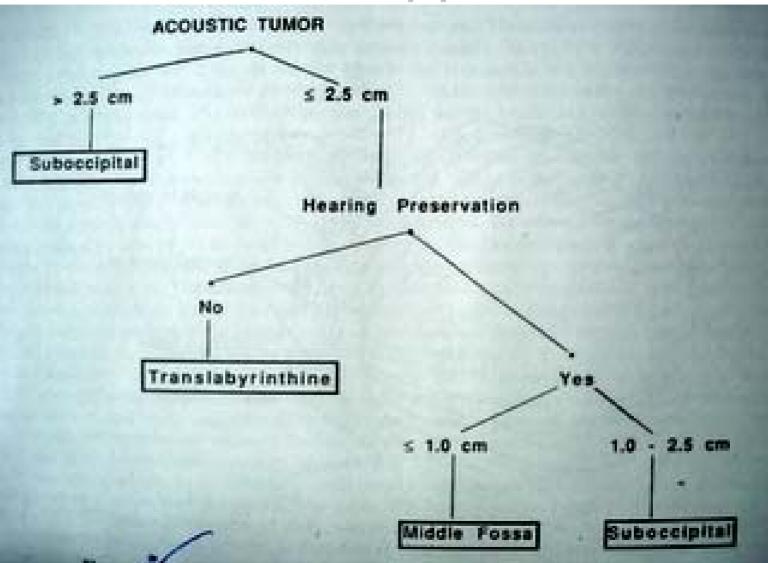
- Deafness
- Reduces exposure
- More CSF leak
- Middle ear infection is a CI

Middle fossa approach

- House 1961
- <u>Indi</u>: Small tumor in lat part of Internal Auditory canal, with facial and hearing preservation.
- <u>Adv:</u>
- Extradural dissection
- Total removal of Tm, even the lat part.
- Hearing preservation

<u>Dis Adv:</u>

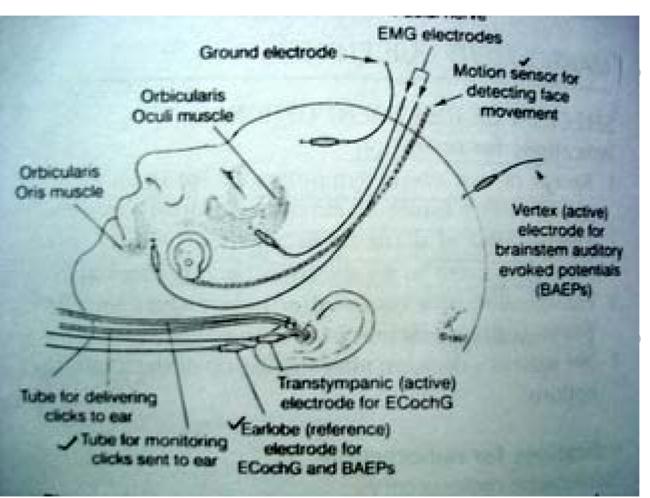
- Facial n comes first
- Limited access to post fossa, esp. if there is bleeding
- Only small tm
- Elderly patients with thin dura are less tolerant to temp. lobe retraction


Other approaches

- <u>Combined SO Translab-</u> (Maddox) wider exposure in large tm, less cerebellar retraction
- <u>Combined SO-transpetrosal-</u> for large tm going into tentorial hiatus
- <u>Subtemporal-transtentorial</u>- (Rosomoff, Banerji et al)- for some larger tm going upwards
- <u>Retrolab</u> (Hitselberger 1972)- presigmoid exposure, less cerebrellar retraction, limited exposure
- <u>Transcanal-</u> For very small Tm- expose IAC through EAC

Other Tech

 Neuronavigation for drilling IAC: Samii et al – investigational, needs more studies


Choice of approach:

Facial N preservation

- 1st- Cairns 1931
- Olivecrona- 1st to attempt in a large series of patients

monitoring

Facial EMG (stimulation 0.1ms, 3 Hz, 0.05 to 1.0 mA) Facial Motion sensor

House and Brackmann

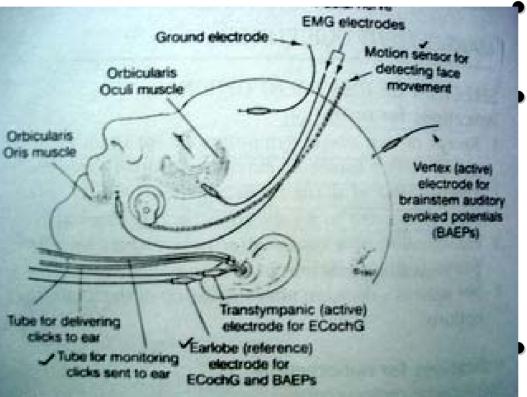
- 1- normal
- 2- close eyelids with min efforts
- 3- no functional impairment, close eyes with max efforts, obvious synkinesis/ contracture/ hemifacial spasm
- 4- Normal symmetry and tone at rest, can't close eyes, severe synkinesis etc
- 5-Asymm at rest, decreased/absent nasolabial folds, minimal movement of eyelids
- 6- No motion, loss of tone

Outcome

- Ojemann 1993:
- Tm size 1cm-100%

1-2 m- 95%

2-3cm-80%


3-4cm- 60%

>4 cm- 50-55%

Samii: better results for same size

- Delayed Facial weakness: edema/inflammationusually complete recovery by 6 mth
- Outcome assessed at one year
- Ebersold (1992): amplitude of CMAP on stimulation of facial N in lateral IAC predicts outcome of facial N
- Others- Intraop change in threshold of stimulation reflects amount of damage.
- Threshold of stimulation at REZ at brainstem reflects outcome.

Hearing preservation: Monitoring

BAER- monitors pathways central to tm **ECoG-CAP of auditory** nerve monitors pathways distal to tm, cochlear microphonics indicates status of cochlea Cochlear N direct

recording of CNAP

Elliot and McKissock first reported hearing preservation in 1954

BAER

- Wave V is most prominent monitored <u>Disadv:</u>
- BEAR unrecordable pre op in 1/3 patients
- Delay in response of upto 20-60 sec due to signal averaging

ECoG

- Monitors CAP of auditory nerve near the cochlea and cochlear microphonics, generated from hair cells.
- <u>Adv:</u>
- Rapid feed back of N1
- Not affected by anesthetic agents
- Almost always detectable
- <u>Problems</u>: dislodgement of electrode, fluid in middle ear may block sound transmission

- Direct recording of CNAP from nerve- good predictor, but impairs surgical field,
- 8th nerve must be visible before it can be used <u>Recently:</u>
- Direct recording of potentials from cochlear nucleus in lateral recess (Jannetta et al)
- Fast BAER response (10 sec) by using electrodes attached to cerebellar retractor (Samii et al)

Prognostic factors

- Small tm (<2cm)
- Good pre op hearing
- Lack of lateral tumor extension to fundus of IAC
- Absent caloric response (tm from sup vestibular N.)
- Sudden intra-op loss of potentials is a poor prognostic Factor
- Intraop presence of severe adhesions between nerve and tm- m imp. factor : <u>Moriyama et al</u> <u>JNS 2002</u>

Serviceable hearing?

- Gardner Robertson 1988
- Class PTA SDS
- 1 0-30 70-100
- 2 **31-50 69-50**
- 3 51-90 49-5
- 4 91-max 4-1
- 5 no response No response

- AAO-HNS 1995
- Class PTA SDS
- A <30 >70
- B 31-50 >50
- C >50 >50
- D any <50
- Others: Shelton et al 1989, Sanaa et al 1995

Technique:

- Jannetta et al:
- Elevate cerebellum, avoid medial retraction !
- Sharp dissection with scissors (No CUSA/laser/forceps)
- Alternate dissection in all directions
- Rostral-caudal retraction of CN 8 does not usually hamper function
- Preserve even small vessels going into the IAC

- Mechanism of hearing loss:
- Direct damage to cochlear nerve
- Involvement_of cochlear nerve by tm
- Interruption of blood supply to cochlea/nerve
- Injury to Labyrinth

Delayed hearing loss:

Nerve edema,

Impairment in vasa-nervorum circulation,

Increased permeability of endoneural vessels after mech. compression trauma, Progressive scarring of IAC with co compression of cochlear N or microvasculature

Results

- <u>Gormley, Shekhar et al, NS 1997</u> (179 patients, 5yr FU, 99% complete removal)
- Size facial(Gr 1/2) Hearing (Gr 1/2)
 - <2 96% 48%
 - 2-3.9 74% 25%
 - >4 38% 0

 Issue--Recurrence of tm after hearing preservation ??
 Samii/ Ojemann- none in FU of 1-8 yrs

Rehabilitation:

- First published Facial N repair: Charles Ballance 1895 (Spinal acc-facial)
- Korte (Berlin) Hypoglossal-facial anas. 1903
- Best results of surgery within 1 yr

Management of facial paralysis

- <u>Nerve preservation/ nerve reconstruction/ nerve</u>
 <u>reanimation/ physiotherapy and static measures</u>
- Intact Facial N-
- Physiotherapy
- Gold weight, ocular spring, other static procedures
- Facial n. not intact
- Add- cranial nerve anastomosis

Nerve reconstruction

- Direct repair at surgery
- Intracranial- intratemporal repair, after drilling the temporal bone, if distal stump is lost
- Intracranial- extracranial repair at stylomastoid foramen, if mastoiditis/previous petrous bone trauma disallows this method

- Reanimation with a donor nerve if proximal nerve stump is lost.
- Hypoglossal N identified below digastric muscle
- Full thickness graft (classical)
- Anastomosing ansa hypoglossi to distal hypoglossal N does not give further benefit

May tech: "Jump graft"- preserves tongue function in 90% patients

 Without graft: intratemporal mobilization of facial N

• Others:

- Spinal accessory-facial anastomosis
- Phrenic
- Glossopharyngeal
- Contralateral facial branches with graft
- (best results with hypoglossal- large cortical representation, close to face)
- <u>Results:</u>
- If H&B Gr 1-2 excellent, Gr 3- good
- Reconstruction 60-70%, Reanimation >70%

- Temporalis/ Masseter muscle transposition: (when Vth nerve is preserved)-
- Alone after 2 years or along with jump graft to prevent sagging of facial muscles till graft starts functioning
- Adv: immediate results

Static procedures for eyelid:

- Gold weight
- 0.9-1.1 gm

• 1×5×10 mm plate

• Palpebral sling placement

Other procedures

- Correct lower eyelid ectropion with auricular cartilage- improves lacrimal puncta position
- Face lift
- Eye brow lift

Physiotherapy

- Fu every 3-6 months, till 3 yrs (Samii et al)
- Daily exercises performed 6 times for 5-10 min.
- Training in front of mirror
- Active and passive individual muscle exercise (eyebrow, eyelid, blowing, smiling)
- Combine eye closure with strong biting
- After anastomosis- pressing tongue against teeth
- Avoid electrical stimulation
- EMG biofeedback

Multichannel auditory brain stem implant (ABI)

- Indi: NF-2 patients >12yrs
- Tech: direct stimulation of cochlear nucleus
- Multichannel implant placed in lateral recess
- Results: 80% patients can hear sounds
- Most patients can recognize >70% of sentence along with lip reading
- Learning period of 6-12 months

NF-2

- Younger age with longer life expectancy
- More difficult to remove surgically (Tm are more invasive, have higher growth rate)
- Faster tm growth
- Multilobulated tm, arising from multiple cranial nerves
- Poor 7th and 8th nerve outcomes with both surgery and GK
- Samii, NS 1997 (120 NF-2 schwannomas): No permanent cure for them.
- Goal: decompress brainstem and prolong period of cranial nerve functions